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We apply a recently developed variant of the Density of States (DoS) method, the so-called Func-
tional Fit Approach (FFA) to two different models: the SU(3) spin model and SU(3) lattice gauge
theory with static color sources. Both models can be derived from QCD and inherit the complex
action problem at finite density. We discuss the implementation of DoS FFA in the two mod-
els and compute observables related to the particle density. For the SU(3) spin model we show
that the results are in good agreement with the results from a Monte Carlo simulation in the dual
formulation, which is free of the complex action problem. For the case of SU(3) lattice gauge
theory with static color sources we present first results for the particle number as a function of the
coupling for different values of the chemical potential.
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1. Introduction

It is well know that a lattice simulation at finite density is, at present time, an extremely chal-
lenging task: A non-zero chemical potential gives rise to an imaginary part of the action which pre-
vents the probabilistic interpretation of the Boltzmann factor, such that a standard MC simulation
is not possible. This so-called complex action problem has stood in the way of reasonable progress
for finite density lattice calculations, and in recent years several methods to circumvent or over-
come the complex action problem were proposed: Ideas such as reweighting, complex Langevin,
the Lefschetz thimble, fugacity expansion, Taylor expansion, analytical continuation from imagi-
nary chemical potential, or the dual formulation, are illustrating how fertile this field of research
has been in the recent years.

In this work we use a Density of States (DoS) method, an approach which has been reviewed
also at this conference [1], and can be used to circumvent the complex action problem. The main
challenge for DoS techniques is that the density changes over many orders of magnitude and has
to be determined with very high precision, such that it can be integrated over with the highly
oscillating phase factor at finite chemical potential. New methods based on parameterizing the
density on small intervals and computing the parameters with restricted Monte Carlo simulations
might be able to overcome the precision problem and could make DoS techniques a reliable tool
for finite density calculations. Among these modern DoS techniques are the LLR approach [2, 3,
4, 5, 6] and the Functional Fit Approach (FFA), which we use here [7, 8, 9, 10]. For an overview
of more conventional DoS strategies see, e.g., the references in the reviews [1, 13].

We here discuss the implementation of DoS FFA for the SU(3) spin model, as well as for
SU(3) lattice gauge theory with static color sources, which in the following we refer to as ”SU(3)
LGT-SCS” for brevity. The SU(3) spin model is a particularly suitable test case for assessing
new strategies for finite density lattice field theory, since it has a dual representation free of the
complex action problem [11], and results from dual simulations [12] can be used as reference data
for evaluating new methods (for a complex Langevin calculation see [14]). The case of SU(3)
LGT-SCS already brings in the full dynamics of SU(3) link variables and captures the finite density
QCD complex action problem, without having to deal with dynamical fermions (compare also the
related model studied with DoS LLR in [6]).

2. General scheme of the functional fit approach

2.1 Definition of the density

The basic equations for computing an observable 〈O〉 and the partition function Z in a lattice field
theory are given by

〈O〉 = 1
Z

∫
D[ψ]e−S[ψ] O[ψ] , Z =

∫
D[ψ]e−S[ψ] . (2.1)

Here we use ψ as a generic symbol for all fields of the theory, and S[ψ] is the corresponding
Euclidean lattice action. The observable is a functional O[ψ] of the field configurations ψ . By∫

D[ψ] we denote the lattice path integral, i.e., the product over the measures of the fields at each
site (or link) of the finite lattice.
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To keep the approach as general as possible we split the action into two parts as follows,

S[ψ] = Sρ [ψ] + ξ X [ψ] . (2.2)

Both parts Sρ [ψ] and X [ψ] are real functionals of the fields ψ and ξ is a parameter which is either
real or purely imaginary, where the latter case is the one relevant for a situation with a complex
action problem. Here we use a weighted density of states and Sρ [ψ] is that part of the action which
we include in the density. The second part X [ψ] is then taken into account via reweighting, and in
case of an imaginary ξ , this is how the complex action problem is handled. Usually for theories
with chemical potential µ the factor is of the form ξ ∝ sinh(µ).

The next step is to introduce a weighted density of states, defined as

ρ(x) =
∫

D[ψ]e−Sρ [ψ]
δ (X [ψ]− x) . (2.3)

We can use the density to rewrite the partition function Z and observables O, that are functions of
the functional X :

Z =
∫ xmax

xmin

dx ρ(x)e−ξ x , 〈O〉 = 1
Z

∫ xmax

xmin

dx ρ(x)e−ξ x O[x] , (2.4)

where xmin and xmax denote the bounds of X [ψ]. It is important to identify any symmetry of the
density that can simplify the calculation. Usually it is possible to demonstrate the evenness of ρ(x),
using a symmetry transformation of the fields, ψ → ψ ′, such that Sρ [ψ

′] = Sρ [ψ], X [ψ ′] =−X [ψ]

and
∫

D[ψ ′] =
∫

D[ψ]. So we have,

ρ(−x) =
∫

D[ψ]e−Sρ [ψ]
δ (X [ψ]+ x) =

∫
D[ψ ′]e−Sρ [ψ

′]
δ
(
−X [ψ ′]+ x

)
= ρ(x) . (2.5)

In that case the expressions for Z and 〈O〉 simplify to

Z = 2
∫ xmax

0
dx ρ(x) cosh(ξ x) , 〈O〉 = 2

Z

∫ xmax

0
dx ρ(x)

(
cosh(ξ x)Oe[x]− sinh(ξ x)Oo[x]

)
, (2.6)

where we have defined the even and odd parts of the observable as Oe[x] = (O[x] +O[−x])/2,
Oo[x] = (O[x]−O[−x])/2. Eq. (2.6) shows that we have halved the initial work, because only the
density for positive x is needed. We further observe that for purely imaginary ξ the hyperbolic
functions are replaced by trigonometric ones, cos(ξ x) and isin(ξ x). They are strongly oscillating
functions and this is how the sign problem shows itself in the DoS approach.

2.2 Parametrization of the density

The next step is to find a suitable parametrization of the density ρ(x), which in many cases is
an exponential ansatz which we discuss now. For the parametrization we first divide the range
[0,xmax] into N intervals In = [xn,xn+1],n = 0,1, . . . ,N − 1 of variable size ∆n = xn+1 − xn and
∑

N−1
n=0 ∆n = xmax. The exponential ansatz for ρ(x) now has the form

ρ(x) = e−l(x) with l(x) = dn + xkn for x ∈ In = [xn,xn+1] . (2.7)

In other words the density is the exponential of a piecewise linear function l(x). For each interval
this linear function is parameterized by a constant dn and a slope kn. We furthermore require l(x) to
be continuous and normalize it to l(0) = 0, which corresponds to the normalization ρ(0) = 1 (such
a normalization can be chosen freely). The continuity condition and the normalization completely
determine the constants dn, and the slopes kn, n = 0,1 ...N−1 are the parameters of ρ(x).
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2.3 Determination of the parameters with restricted expectation values

For the determination of the parameters kn we define so-called restricted expectation values 〈〈O〉〉n(λ ).
They depend on a real parameter λ and are defined as:

〈〈O〉〉n(λ ) =
1

Zn(λ )

∫
D[ψ]e−Sρ [ψ]+λX [ψ] O[X [ψ]]Θn[X [ψ]] ,

Zn(λ ) =
∫

D[ψ]e−Sρ [ψ]+λX [ψ]
Θn[X [ψ]] ,

Θn[x] =

{
1 for x ∈ [xn,xn+1]

0 otherwise
. (2.8)

The support function Θn[x] restricts the simulation to the interval In that we want to sample, where
the slope kn determines ρ(x). The additional Boltzmann weight with the parameter λ ∈ R can be
used to systematically probe the density in In. Since λ is real, one can use a standard simulation to
compute the restricted expectation value.

One can now work out explicitly Zn(λ ) using the parametrized density of states. One finds

Zn(λ ) =
∫ xn+1

xn

dxρ(x)eλ x = c

xn+1∫
xn

dxe−knx eλx = c
e(λ−kn)xn+1− e(λ−kn)xn

λ − kn
, (2.9)

where c is an irrelevant constant. From this we can compute the expectation value 〈〈X〉〉n(λ ), which
we write as 〈〈X〉〉n(λ ) = ∂ lnZn(λ )/∂λ . A straightforward calculation gives

1
∆n

(
〈〈X〉〉n(λ )− xn

)
− 1

2
= F

(
(λ − kn)∆n

)
with F(s) =

1
1− e−s −

1
s
− 1

2
. (2.10)

F(s) is a real-valued smooth function of a real variable s. It is monotonically increasing and has a
single zero at s = 0. F

(
(λ −kn)∆n

)
describes the distribution of the restricted expectation values in

the l.h.s of Formula (2.10) as a function of λ . Performing M.C. simulations for different values of
λ gives us a set of points with an associated error. We fit these points with F

(
(λ − kn)∆n

)
and we

obtain the slope kn. This procedure is the reason for referring to our method as the "functional fit
approach". Once the kn are computed we know the density and obtain observables using Eq. (2.6).

3. The SU(3) spin system and SU(3) lattice gauge theory with static color sources

The SU(3) spin model and the SU(3) LGT-SCS are two closely related models. Both can be
motivated from QCD and inherit the complex action problem from QCD. Results for the SU(3)
spin model were already discussed in [9], such that here the discussion of that case is kept short.

For the SU(3) spin model the action is,

S[P] = −τ ∑
~n∈Λ3

3

∑
ν=1

[
P(~n)P(~n+ ν̂)∗+ c.c.

]
− κ ∑

~n∈Λ3

[
eµ P(~n)+ e−µ P(~n)∗

]
, (3.1)

where the P(~n) are the traces of SU(3) matrices on the sites~n of a 3-dimensional lattice representing
the Polyakov loops.
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For SU(3) LGT-SCS the action is

S[U ] =−β

3 ∑
n∈Λ

∑
µ<ν

Re
[
Tr(Uµ(n)Uν(n+ µ̂)Uµ(n+ ν̂)†Uν(n)†)

]
−κ ∑

~n∈Λ3

[
eµNT P(~n)+e−µNT P(~n)†] ,

(3.2)
where here the d.o.f. are SU(3) matrices Uµ(n) on the links of a 4-dimensional lattice, and we have
a proper Polyakov loop defined as:

P(~n) =
1
3

Tr
NT−1

∏
n4=0

U4(~n,n4) ,

and the corresponding terms in (3.2) represent static color sources.
The two models have the parameter κ in common, which is a decreasing function of the quark

mass. Also the chemical potential has the same role in the two theories: it gives a different weight
to forward and backward winding Polyakov loops. Note that in the SU(3) LGT-SCS we display
explicitly the temporal extent NT , while in the spin model this is absorbed in the chemical potential
µ . The two models differ in the terms describing the dynamics of the degrees of freedom: In the
SU(3) LGT-SCS we use the Wilson gauge action with inverse gauge coupling β , while in the spin
model this is replaced by a nearest neighbour interaction and τ is the temperature parameter.

The decomposition of the action is quite straightforward for both models. We can write:

Sρ [ψ] = ReS[ψ] ,

SU(3) spin : X [P] = ∑
~n

ImP(~n) , ξ = i2κ sinh(µ) ,

SU(3) LGT-SCS : X [U] = ∑
~n

ImP(~n) , ξ = i2κ sinh(µNT ) .

(3.3)

The symmetry which ensures the evenness of the density ρ(x) is complex conjugation of the dy-
namical variables in both models.

With these definitions it is simple to implement the FFA and to perform the required restricted
Monte Carlo simulations for finding the slopes kn which determine the density ρ(x). We can define
the same observables for the two models by derivatives with respect to sinh(µ) (for SU(3) spin)
and with respect to sinh(µNT ) (for SU(3) LGT-SCS):

n ≡ 〈 Im P(~n)〉 ≡ − 1
V

1
2κ

∂

∂ sinh(µ)
lnZ =

2
V

1
Z

xmax∫
0

dx ρ(x) sin(2κ sinh(µ)x)x , (3.4)

χn =
1

2κ

∂

∂ sinh(µ)
n

=
1
V

{
2
Z

xmax∫
0

dxρ(x) cos(2κ sinh(µ)x)x2 +
( 2

Z

xmax∫
0

dxρ(x) sin(2κ sinh(µ)x
)2
}
,

(3.5)

where we obtain the corresponding observables for SU(3) LGT-SCS by replacing µ with µNT .
Let us now come to the presentation of the results for these observables. As already remarked,

for the SU(3) spin system we can use the results from the dual formulation [11, 12] as reference
data for the DoS FFA results. In Fig. 1 we show n and χn as a function of µ for a 123 lattice at fixed

4



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
0
4
0

Density of states techniques M. Giuliani

τ = 0.130 and κ = 0.005. We observe good agreement between the two different methods up to
µ ≈ 4 for n and up to µ ≈ 2 for χn. This confirms the reliability of the DoS FFA for n and χn in
the respective ranges of µ( see [9] for a more detailed discussion).
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Figure 1: Simulation of the SU(3) spin model. Observable for a lattice 123 with κ = 0.005 and
τ = 0.130 as function of µ . We observe a good agreement between the two methods.

SU(3) LGT-SCS, up to today, has no dual formulation. To study this model we decided to
perform a preliminary standard simulation at µ = 0. This is useful because it allows to study the
transition as function of κ . In the l.h.s. plot of Fig. 2 we show 〈|P|〉 as a function of κ and observe
that for larger κ the transition shifts toward smaller β . Next we try to locate the bending of the
surface also at chemical potential µ 6= 0. Pursuing this goal we simulated a 83× 4 lattice with
κ = 0.04 and different β and chemical potentials. In the r.h.s. plot of Fig. 2 we show n = 〈ImP〉
as a function of β and observe a shift toward smaller β for larger chemical potential µ . A detailed
discussion of this model will be presented in a forthcoming paper.

4. Summary

In these proceedings we briefly reviewed the Functional Fit Approach for the DoS method.
This method is a general tool to handle the complex action problem. The argument of the density
ρ is divided in a set of intervals and ρ is parameterized as the exponential of a piecewise linear
function. In this way ρ is completely described by the slopes kn of the intervals ∆n, that we can
compute using a restricted Monte Carlo simulation.

We briefly present two models, SU(3) spin and SU(3) lattice gauge theory with static color
sources. The results are encouraging and we conclude that the FFA approach is an interesting tool
to study systems with a complex action problem.

5



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
0
4
0

Density of states techniques M. Giuliani

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  1  2  3  4  5  6  7  8

|P|

β

κ=0.00
κ=0.16
κ=0.24
κ=0.32
κ=0.64
κ=0.96
κ=1.12
κ=1.28

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

5.40 5.45 5.50 5.55 5.60 5.65 5.70 5.75 5.80

Im[P]

β

µ=0.15

µ=0.25

µ=0.35

Figure 2: Results for SU(3) LGT-SCS on a 83× 4 lattice. On the l.h.s. we present 〈|P|〉 for a
standard simulation at µ = 0. We observe a shift toward smaller β for larger κ . On the r.h.s. we
show n = 〈ImP〉 from a simulation at µ 6= 0 and fixed κ = 0.04. We observe a shift toward smaller
β for increasing chemical potential µ .
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