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1. Introduction
A major contemporay goal of theoretical physicists is to study QCD at non-zero chemical

potential. Recently the simulation of quantum field theories using man-made physical systems has
become a real possibility [1]. In [2, 3] an experimental set-up to quantum simulate the CP(2) model
using alkaline-earth atoms trapped in an optical lattice was proposed. The theoretical model for the
proposed experiment is an SU(3) quantum spin ladder. Using Monte Carlo techniques, the proposal
was supported by numerically simulating this quantum spin system. In this publication we present
numerical results which support the use of quantum simulation experiments to study quantum field
theories at non-zero chemical potential.

We simulate the (1+1)-d CP(2) model, which shares several interesting features with QCD,
namely asymptotic freedom, a dynamically generated mass gap and topological sectors, via di-
mensional reduction of a (2+1)-d microscopic theory – an SU(3) quantum spin ladder. We present
numerical results for the particle number density as a function of chemical potential, which confirm
that our theoretical framework is robust.

2. Theoretical Framework
The theoretical framework is that of D-theory [4, 5, 6], in which the target field theory emerges

from the dimensional reduction of a system of discrete variables. The microscopic theory of dis-
crete variables is chosen such that at low energies its global symmetry spontaneously breaks to give
a certain number of Nambu-Goldstone bosons, which emerge as degrees of freedom in the coset
space of the global broken and unbroken symmetry groups.
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Figure 1: The quantum spin variables are positioned in a periodic, square, bipartite lattice; spins living on
sublattice A and B transform under the fundamental and antifundamental representations of SU(3), respec-
tively. The transparent plaquettes extending into the β direction illustrate the Trotter decomposition of a
single Euclidean time step ε .

Since the (1+1)-d CP(2) model has a global SU(3) symmetry, we investigated a microscopic
theory with a nearest-neighbour interaction between SU(3) quantum spins located at a site x on an
L×L′ periodic, square, and bipartite lattice with spacing a, as shown in Figure 1. The Hamiltonian
is,

H =−J ∑
〈xy〉
x∈A

T a
x T a∗

y −µ
aT a, T a = ∑

x∈A
T a

x −∑
y∈B

T a∗
y , (2.1)

where the SU(3) quantum spins T a
x = 1

2 λ a
x , obey the usual commutation relations, [T a

x ,T
b

y ] =

iδxy fabcT c
x , and λ a and fabc are the generators and structure constants of SU(3), respectively. µa is
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a vector of the chemical potentials in the directions λ a, but we need only include µ3 and µ8 since
for SU(3) two independent Casimir operators can be constructed. Also, we have set h̄ = 1.

Spins living on sublattice A transform in the fundamental representation {3}, while those
living on sublattice B transform in the antifundamental representation {3̄}, which is written explic-
itly as −T a∗

x rather than T̄ a
x . For µa = 0, the system has a global SU(3) symmetry and hence a

total spin conservation, [H,T a] = 0. An antiferromagnetic coupling, J > 0, and the fundamental-
antifundamental nature of the nearest neighbour interaction are chosen to obtain the relativistic
spectrum required for CP(2) model physics.

This choice also means that in the thermodynamic limit, β ,L,L′→ ∞, the global SU(3) sym-
metry breaks to U(2) [7, 8], giving rise to four1 massless Nambu-Goldstone bosons that live in
the coset space SU(3)/U(2) = CP(2). The emergent fields are conveniently described by a 3× 3
Hermitean projection matrix field P, with P = P2, Tr P = 1, P = P†, and by the (2+1)-d effective
action,

S[P] =
∫

β

0
dt
∫ L

0
dx
∫ L′

0
dyTr

[
ρs∂iP∂iP+

ρs

c2 DtPDtP
]
, (2.2)

where ρs and c are the spin stiffness and spinwave velocity, respectively, DtP = ∂tP− [µaT a,P]
rather than ∂tP includes the chemical potential contribution, and the index i is for an implicit
summation over the two spatial dimensions.

Now, if L′ is made finite the excitations of the emergent fields only feel two infinite dimensions.
The Mermin-Wagner theorem then insists that the bosons pick up a nonperturbatively generated
mass gap, m = 1/ξ where ξ is the temporal correlation length. Since the (1+1)-d CP(2) model
is asymptotically free and ξ ∝ exp[4πL′ρs/3c], then if L′ is chosen such that ξ � L′ the (2+1)-d
system will undergo dimensional reduction and moreover the continuum limit will be approached.
The dynamics of the resulting system are described by the (1+1)-d effective action,

S[P] =
c
g2

∫
β

0
dt
∫ L

0
dx Tr

[
∂xP∂xP+

1
c2 DtPDtP

]
(2.3)

where g2 = c/ρsL′ is the dimensionless coupling constant of the dimensionally reduced theory.

3. Numerical Results
Using Monte Carlo techniques, a numerical simulation of the SU(3) quantum spin system de-

scribed by (2.1) has been performed. A Trotter decomposition was employed to discretize the time
direction such that β = Ntε/4, where Nt is the number of lattice points in the temporal direction
and ε is a Euclidean time step. Figure 1 illustrates the plaquette break-up resulting from the Trotter
decomposition procedure for a single Euclidean time step.

In [6] and [9] a meron-cluster algorithm was used to solve the sign problem at non-zero chem-
ical potential in the CP(1) model, here the CP(2) model is updated using a worm algorithm, which
is capable of updating the system at non-zero chemical potential without encountering a sign prob-
lem. The worm rules were derived using information provided by [10, 11]. In this proceeding we
only show results for lattices with periodic boundary conditions and we always keep βc≈ L, where
a value of c = 1.7763(2)Ja was determined using the procedure exhibited in [12].

1SU(3) has eight generators, U(2) has four, hence this symmetry breaking results in 8−4 = 4 Goldstone bosons.
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Figure 2: A schematic picture of the conjectured µ3-µ8 phase diagram for the lattice CP(2) model. At µ3=

µ8=0 the CP(2) model enjoys a global SU(3) symmetry, away from this point the global symmetry reduces
to U(1)×U(1) except along the dashed lines, where λ3 =±

√
3λ8 and the global symmetry is SU(2)×U(1).

For µ < mc2, where m is the mass gap and µ =
√

µ2
3 +µ2

8 , we expect a region of vacuum, while for large

values of µ we expect to reach a state of saturation – all spins aligned . In the intermediate region, µ > mc2

but not large, the phase of the system is a matter of investigation, but we expect the produced bosons to
undergo some form of condensation.

Figure 2 summarises our basic theoretical expectations for the (1+1)-d CP(2) model µ3-µ8

phase diagram at zero temperature. A definite expectation is that the system has a mass gap m.
Hence our first goal was to confirm this: Figure 3 shows results for the particle number density
〈n〉, for simulations with βJ = 140.75, L/a = 250, εJ = 0.05, L′/a = 8,10,12, µ8 = 0 and µ3 > 0.
From measurements of the correlation length at zero chemical potential, the rest energy gaps in
each L′ case were calculated to be mc2 = 0.1248(10)J, 0.0623(2)J, and 0.0322(3)J, respectively.
The error is relatively small for L′/a = 10 because more runs were performed in this case. As we
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Figure 3: Particle number density plotted against chemical potential for L/a = 250, βJ = 140.75 and
εJ = 0.05 for L′/a = 8,10,12. The dashed vertical lines mark the rest energy gaps calculated for each case:
0.1248(10)J, 0.0623(2)J, and 0.0322(3)J, respectively.
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can see in Figure 3, 〈n〉 starts to become significantly larger than zero close to the point where
µ3 = mc2, agreeing with expectation.

For our finite system a sharp increase in 〈n〉 precisely at µ3 = mc2 is not observed, we suspect
this is a finite size effect. In an infinite system with an associated infinite number of degrees of
freedom, we would expect there to be a non-analytic point at µ3 = mc2, with 〈n〉= 0 for µ3 < mc2,
and 〈n〉 > 0 for µ3 > mc2. In agreement with this expectation, Figure 4 shows that for µ3 < mc2,
〈n〉 tends towards zero, for any given value of µ3, as the thermodynamic limit is approached. Here
we also compare the results with a simple model for the particle number density of a free boson
gas,

〈n〉= 〈N
+〉−〈N−〉

L
, 〈N±〉= ∑

p

1

eβ

(√
p2c2+m2c4∓µ

)
−1

, (3.1)

where p = 2πl/L, l ∈ Z, are the allowed momenta in the (1+1)-d system. Note that the allowed
momenta do not form a finite set because the model assumes a spatial continuum rather than lattice,
we did not undertake the significant effort to calculate the lattice dispersion relation for the model
because at low energies we expect the continuum dispersion relation to be very similar. For 0 <

µ3 � mc2 we see good agreement between the free boson model and numerical data, this makes
sense because at very small values of µ3 we have a system so dilute that it most often consists
of zero or one particle, in this case particle interactions are negligible. For larger values of µ3

interactions between bosons become significant and we no longer expect agreement between the
numerical data and the free boson model.
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Figure 4: Particle number density plotted against chemical potential for L′ = 10, εJ = 0.05 and various
L, where L ≈ βc. (b) is simply a zoom-in of (a). The solid lines show the prediction of the free boson
model for 〈n〉. The free boson model is formulated in the continuum rather on the lattice, hence there are
an infinite number of degrees of freedom available, this permits an infinite number of bosons to be produced
once µ3 = mc2 is reached, at this point 〈n〉 → ∞ since there are no interactions to limit production.

Although the free boson gas model can not help us check the numerical results above and near
µ3 =mc2, we can check the data in this region by studying how 〈n〉 scales for particular values of µ3

in the thermodynamic limit. The particle density is suppressed by the Boltzmann factor e−β (mc2−µ3),
hence, for increasing β , we can expect 〈n〉→ 0 exponentially slowly for µ3 <mc2, but for µ3 >mc2

the scaling is not clear and unlikely to be exponential since there will be many particles interacting
strongly. Figures 5 (b)-(d) confirm that for µ3 < mc2 the particle number density does indeed scale
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exponentially. Figures 5 (e)-(f) do not show such clear exponential behaviour, as we expected, but
it is difficult to say that another particular type of scaling is being followed since (e) and (f) do
not look similar; perhaps in (d)-(f) we are seeing the transition from exponential to another type of
scaling or perhaps because the uncertainties are more significant in these cases the central values
have landed in deceiving positions. At the very least we have not found evidence which contradicts
the validity of the theoretical framework.

4. Conclusions and Outlook
Using D-theory, the (1+1)-d CP(2) model has been simulated at non-zero chemical potential,

and the particle number density is observed to behave in a manner congruent with expectations.
Specifically: i) 〈n〉 becomes significantly larger than zero beyond the value of the chemical poten-
tial equal to the system’s expected rest energy gap; ii) at low densities the results agree with a free
boson gas model remarkably well, above and near µ3 = mc2 the density is larger and we do not
expect there to be agreement since the simple free boson gas model is inadequate; iii) for µ3 < mc2

the results for 〈n〉 scaling with temperature exhibit the expected exponential scaling, while for
µ3 > mc2 we have some evidence that another type of scaling is present, which would agree with
expectations.

In work to be published soon the study presented here will be repeated for open boundary
conditions in the L′-direction to allow direct comparison with future experiments. Furthermore
simulations for µ8 6= 0 and measurements of spin-spin correlation functions will be included to
permit a more comprehensive expostion of the CP(2) µ3-µ8 phase diagram.
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Figure 5: Particle number density plotted on a logarithmic scale against system size for L≈ βc, L′/a = 10,
εJ = 0.05 and the µ3 values: (b) 0.04J (red), (c) 0.05J (green), (d) 0.06J (blue), (e) 0.07J (black), (f) 0.08J
(orange). In (a), (b)-(f) are combined, the dotted lines are the expectations from the free boson gas model
for µ3: 0.04J (red), 0.05J (green), 0.06J (blue), although we expect exponential scaling for these values
of µ3 since they are below mc2 = 0.0623(2)J, and hence straight line behaviour on a log-plot, we find it
interesting to show from this perspective how the boson gas model increasingly agrees with the data as the
thermodynamic limit is taken, but decreasingly as µ3 increases towards mc2.
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