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The spectrum of the two-dimensional continuum Dirac operator in the presence of a uniform
background magnetic field consists of Landau levels, which are degenerate and separated by gaps.
On the lattice the Landau levels are spread out by discretization artefacts, but a remnant of their
structure is clearly visible (Hofstadter butterfly). If one switches on a non-Abelian interaction, the
butterfly structure will be smeared out, but the lowest Landau level (LLL) will still be separated
by a gap from the rest of the spectrum. In this talk we discuss how one can define the LLL in QCD
and check how well certain physical quantities are approximated by taking into account only the
LLL.
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1. Introduction

Strong magnetic fields play a crucial role in noncentral heavy-ion collisions, compact stars
and in the evolution of the early Universe. For a recent review see [1]. Progress in the study of
these problems requires a better understanding of the effect of an external magnetic field in Quan-
tum Chromo Dynamics (QCD), the theory which describes the strong interaction between quarks
and gluons. In QCD the external magnetic field has an impact on the dynamical chiral symmetry
breaking in the vacuum of the theory. Below the QCD crossover temperature the order param-
eter for chiral symmetry breaking, i.e., the chiral condensate, is enhanced by the magnetic field,
a phenomenon called magnetic catalysis [2]. Around the pseudo-critical temperature the chiral
condensate instead decreases when the magnetic field is turned on (inverse magnetic catalysis) [3].

As the magnetic field enters the Dirac operator /D, it affects the chiral condensate in two
ways [4]. Since /D is the operator of interest, there is a direct, “valence” effect of the magnetic
field on the observable. However, the magnetic field also influences the probability distribution of
the gauge configurations through the fermionic determinant in the action, thus having a second,
indirect effect on the chiral condensate. The latter we call the “sea” effect. In order to get some in-
sight into the phenomena of magnetic catalysis and inverse magnetic catalysis, it is useful to study
the valence and the sea effects separately.

The valence effect is studied by determining the spectrum of the Dirac operator at nonzero
magnetic field B on a typical configuration obtained at B = 0. The result is an increase in the
density of the low modes of the Dirac operator, which leads through the famous Banks-Casher
relation [5] to magnetic catalysis. However, by turning on the magnetic field also in the sea, the
fermionic determinant would suppress those gauge configurations which contain a larger density
of small eigenvalues. Thus the sea effect drives the system towards inverse magnetic catalysis. It
turns out that the valence effect dominates over the sea except around the pseudo-critical transition
temperature [3]. Here the Polyakov loop effective potential is flat and a small effect of the magnetic
field in the fermion determinant can significantly change expectation values [6].

Magnetic catalysis is often attributed to the linear dependence of the degeneracy of the lowest
Landau level (LLL) on the strength of the magnetic field. A widely employed approximation in
low-energy models, effective theories and functional approaches is to neglect higher Landau levels,
see, e.g., Refs. [7, 8, 9, 10, 11, 12, 13, 14]. To assess the systematics of such approximations, here
we study the issue of Landau levels on the lattice for the first time, and check directly their influence
on the chiral condensate.

2. Landau levels

In the case of free1 quarks exposed to a uniform background magnetic field (which will always
point in the z direction), the spectrum of the Euclidean Dirac operator is organized in so-called
Landau levels. We first examine them in 2d, and then proceed to the physical (3+ 1)d case. We
start with the continuum, finite volume case, and then go to the lattice. In a finite periodic box of

1In this context “free” means that the quarks do not interact with gluons.
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Figure 1: Classification of the lattice eigenvalues according to continuum Landau-level degeneracies. The
left panel shows the spectra of the free two-dimensional Dirac operator, while the right panel shows the
interacting case – evaluated on a two-dimensional slice of a typical four-dimensional gauge configuration.

area L2, the flux of the magnetic field is quantized according to

Nb ≡
qBL2

2π
∈ Z , (2.1)

and the eigenvalues of the free, massless − /D2 are

λ
2
k = |qB|k , k = 2n+1−2szsgn(qB) , n = 0,1, . . . , sz =±

1
2
. (2.2)

The integer k identifies the Landau level (LL). The degeneracy νk of each LL is proportional to the
magnetic flux through the area of the system, i.e,

νk = NbNc (2−δk,0) . (2.3)

The separation between levels is proportional to the strength of the magnetic field. Thus, for large
magnetic fields there will be a huge separation between the lowest Landau level (LLL), which
(for positive qB) corresponds to (n,sz) = (0, 1

2), and the rest of the spectrum, since the LLL is B
independent. If this separation of modes persists even after turning on the strong interaction, then
one could easily explain magnetic catalysis in 2d: the enhanced density of the lowest modes would
in fact increase the condensate through the Banks-Casher relation.

In order to check this explanation we put the theory on a symmetric 2d lattice nx = ny and use
the staggered discretization of the Dirac operator. Here and in the rest of the paper we only consider
the magnetic field dependence of the operator, i.e., the valence effect, while setting B = 0 in the
fermion determinant. We use n f = 2+ 1 flavors of staggered quarks with physical quark masses.
On the lattice the degeneracy of the LL-s is broken by lattice artefacts, and the spectrum forms a
fractal structure (Hofstadter butterfly) in the λ −B plane [15]. This is shown in the left panel of
Fig. 1. The different LL-s are represented by different colors and are identified with the help of
eq. (2.3) just by counting modes (and taking into account the twofold doubling of eigenvalues in
two dimensions).

Next we switch on QCD interactions by taking one 2d x− y slice of a typical 4d QCD gauge
configuration and inserting the links in the two-dimensional staggered Dirac-operator /Dxy. This
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Figure 2: The 2d spectrum, rescaled by the bare quark mass, as a function of the magnetic flux, for different
lattice spacings, ranging from a = 0.125fm to a = 0.041fm.

smears out almost entirely the butterfly structure [16] (see the right panel of Fig. 1). However,
a clear gap is still present, with the number of eigenmodes below the gap exactly matching the
expected continuum degeneracy (2.3). These features enable us to unambigously identify the LLL
also in two dimensional QCD. The identification of the higher LL-s is however no longer possible
after color interactions are included.

The reason why the LLL survives the presence of strong interactions is topological. In fact, in
2d and in the continuum, the index theorem assures that the number of zero modes of /Dxy equals
the magnetic flux, which is a quantized topological invariant, irrespectively of the presence of
SU(3) interactions. On the lattice these become almost zero modes, which are however protected
by topology and remain separated from the modes above the gap. To show that this gap is not just a
lattice artefact we have to perform the continuum limit. We take lattices at five different spacings,
corresponding to 4d lattices with temporal extent ranging from nt = 4 up to nt = 12, keeping the
physical lattice volume and temperature fixed. To make a comparison between different lattice
spacings, we rescale each eigenvalue with the bare quark mass [17] and use the same physical
magnetic field, which corresponds to using the same flux (Nb) on all nt-s. We show our results in
Fig. 2. The gap between the first 3Nb modes and the rest of the spectrum indeed persists for small
flux quanta even at the smallest lattice spacing.

3. Lowest Landau level dominance in 2d

Having found a way to identify the LLL in 2d QCD, we now turn our attention to its contri-
bution to the valence effect on the chiral condensate discussed in the Introduction. We begin again
with the 2d case, i.e., from the study of 2d slices of 4d QCD configurations. The contribution from
the LLL to the condensate is:

〈ψ̄ψ〉B,2d,LLL =

〈
∑

i∈1···3Nb

2m
λi(B)2 +m2

〉
, (3.1)

where λi(B) are the eigenvalues of the finite-B operator. At zero magnetic field, the contribution of
the first 3Nb modes to the condensate is

〈ψ̄ψ〉B=0,2d,LLL =

〈
∑

i∈1...3Nb

2m
λi(0)2 +m2

〉
, (3.2)
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Figure 3: Left panel: the portion of the change in the condensate coming from the LLL at a fixed temperature
(T =214 MeV) as a function of the magnetic flux. Right panel: the spectral density of the 2d Dirac operator
at zero and non-zero external magnetic field respectively.

where λi(0) are the eigenvalues of the zero-B operator. The change in the condensate coming from
the first 3Nb modes, which at finite B are precisely the LLL modes, is just the difference between
(3.1) and (3.2). To quantify how much of the total change in the condensate comes from the LLL,
we compute the ratio of the differences:

〈ψ̄ψ〉B,2d,LLL−〈ψ̄ψ〉B=0,2d,LLL

〈ψ̄ψ〉B,2d−〈ψ̄ψ〉B=0,2d
, (3.3)

where 〈ψ̄ψ〉B,2d and 〈ψ̄ψ〉B=0,2d are the full condensate at nonzero and zero B, respectively. In
the left panel of Fig. 3 we show this ratio as a function of the magnetic flux for three values of the
lattice spacing. Remarkably, the LLL explains almost entirely the change in the condensate. To
further illustrate the LLL dominance we show the spectral density of the 2d Dirac operator in the
right panel of Fig. 3 for zero and non-zero magnetic field. At non-zero Nb one can clearly see a
drop in the spectral density, corresponding to the gap discussed above. Moreover, above the drop
the two spectral densities are almost identical, which is the reason why the LLL dominates the
change in the condensate.

4. Landau levels in 4d

After having seen how well the LLL dominance works in 2d, we generalize the notion of LL-s
to the physically more interesting (3+ 1)d case. Let us first discuss the eigenmodes of the free
Dirac operator in a finite 4d box. They factorize into an (x,y) dependent part, which is one of the
2d LL solutions, and into plane waves describing free propagation in the z and t directions. The
eigenvalues of − /D2 are now

λ
2 = |qB| [2n+1−2szsgn(qB)]+ p2

z + p2
t , n = 0,1, . . . , sz =±

1
2
, (4.1)

where pz =
2π

Lz
kz and pt =

π

Lt
(2kt +1), with integer kz and kt , are the momentum in the z and

t directions, respectively. The gap, which was present in the 2d case, is now filled due to the
contribution of the z and t momenta. Thus by just looking at the spectrum we are no longer able
to identify the LLL. The situation is obviously even more complicated after SU(3) interactions are
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Figure 4: Left panel: overlap between a 4d mode and the j-th 2d eigenmode, as defined in (4.2). An
average over 4d eigenmodes in the range λ

mud
∈ [220,225], and an average over several gauge configurations

are performed. Right panel: The fraction of the change in the valence condensate in 4d that can be attributed
to the change of the first 3Nb modes on all (z, t) slices as a function of the physical magnetic field. The
temperature is 124 MeV.

switched on. However, we have seen that also in this case we can identify the LLL among the 2d
modes on an arbitrary (z, t) slice. Now naturally arises the question whether these LLL 2d modes
have any special role in the 4d spectrum. To answer this question, we begin by determining what
is the overlap of a 2d eigenmode with a given 4d mode, i.e.,

Wj (B) = ∑
z,t
|(φt,z, j (B) ,ψ) |2, (4.2)

where the summation is over all (z, t) slices, φt,z, j (B) is the j-th positive eigenmode of the 2d Dirac
operator on the (z, t) slice and ψ is a 4d eigenmode.

Our results are shown in the left panel of Fig. 4 for Nb = 8 and T ' 400MeV. Here we
averaged over modes in a small spectral window in the low part of the 4d spectrum and over gauge
configurations. We can see that there is a jump in Wj after the first 3Nb modes, which make up
the LLL in the 2d case. Thus the LLL gives indeed a distinct contribution to the 4d modes, and
it seems therefore reasonable to define the LLL contribution to the 4d eigenmodes by projecting
them onto the 2d LLL modes.

5. Lowest Landau level dominance in 4d

Having defined the LLL part of a 4d eigenmode we can determine the LLL contribution to the
valence effect. The change in the condensate in 4d due to the appearance of 3Nb would-be zero
modes on each z, t slice can be calculated in a similar manner as in the 2d case. The contribution
to the condensate from the LLL modes at finite B is identified as

〈ψ̄ψ (B)〉3Nb, all slices =

〈
∑

i

2m
λi(B)2 +m2Ci(B)

〉
, (5.1)

where Ci(B) is the size of the projection of mode i on the LLL subspace, Ci (B) = ∑doublers ∑
3Nb
j=1Wj,

where the summation includes the negative doublers of the 2d LLL modes.2 In order to calculate
2The i dependence of C comes from the fact that the scalar product in W j (4.2) has to be evaluated with ψi.
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the change in the condensate due to these modes we have to subtract the contribution of the first
3NB 2d modes at B = 0:

〈ψ̄ψ〉3Nb, all slices =

〈
∑

i

2m
λi(0)2 +m2C0

i (Nb)

〉
. (5.2)

Here C0
i (Nb) is the size of the projection of mode i on the subspace built out of the first 3Nb 2d

modes on each slice,

C0
i (Nb) = ∑

doublers
∑
t,z

3Nb

∑
j=1
|(φt,z, j(0),ψi)|2 , (5.3)

where φt,z, j(0) is the j-th 2d mode on slice (t,z) in the absence of the magnetic field. In the right
panel of Fig. 4 we show what fraction of the valence effect comes from the fact that the nature of the
first 3Nb modes on all (z, t) slices has changed. The continuum limit has been obtained by assuming
that ∆〈ψ̄ψ(B)〉LLL

∆〈ψ̄ψ(B)〉 approaches it quadratically in the lattice spacing, which leads to an acceptable χ2

for all values of the magnetic field. The contribution of the 2d LLL modes gets larger and larger as
the magnetic field increases, which suggests LLL dominance for large B, as expected from effective
models. In fact they use the LLL approximation in the limit qB� (πT )2. We show the magnetic
field corresponding to (πT )2 with a vertical line. We conclude that for our largest magnetic field
50% of the valence effect comes from the LLL in the physical 4d case. In the future it will be very
interesting to see whether the “sea” effect can also be reproduced in the LLL approximation.
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[16] G. Endrődi, PoS LATTICE 2014, 018 (2014) [arXiv:1410.8028].

[17] T. G. Kovács and F. Pittler, Phys. Rev. D 86, 114515 (2012) [arXiv:1208.3475].

6


