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In this contribution we revisit simulations of two-color QCD with rooted staggered quarks at fi-
nite density, where baryon-number spontaneously breaks and a diquark condensate forms. We
thereby pay special attention to simulating outside the lattice-artifact bulk phase, in which Z2

monopoles condense, and investigate some of the consequences of this, e.g. on the chiral and the
diquark condensate which were known to be well described by chiral effective field theory. Not
surprisingly, on finer lattices outside the bulk phase the quark condensate now requires additive
renormalization before it can be compared with effective field theory predictions. The subtrac-
tion must necessarily depend on the chemical potential, however. The diquark condensate is not
affected by this problem and remains in good agreement with these predictions. We also compare
staggered with Wilson quarks to demonstrate that the two fermion discretizations yield qualita-
tively different results well below half-filling already. We close with prelimiary results for the
Goldstone spectrum to demonstrate that the continuum pattern is recovered also with staggered
quarks outside the bulk phase.
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1. Introduction

Lattice simulations of two-colour QCD (QC2D) can be performed at finite density without a
sign problem and by now have a long history already [1, 2]. The physics of the bosonic diquark
baryons is believed to be fairly well understood and qualitatively resembles QCD at finite isospin
density with pion condensation [3]. There is good guidance from effective field theory and random
matrix theory predictions [4, 5, 6] and model studies of the BEC-BCS crossover inside the con-
densed phase [7, 8]. In QC2D diquarks play a dual role as two-color baryons and pseudo-Goldstone
bosons of the dynamical breaking of an extended chiral symmetry. When they condense they are
expected to form a superfluid which changes in nature from a Bose-Einstein condensate of tightly
bound diquarks to a BCS-like pairing of quarks as chiral symmetry gets gradually restored with
increasing density. Recent results with both, staggered [9] and Wilson [10] quarks have confirmed
previous evidence from coarser lattices for this superfluid phase. In line with the predictions from
chiral effective Lagrangians, at zero temperature it first occurs when the quark chemical potential
µ reaches half the pion mass, and this is also correctly reproduced in effective lattice theories for
heavy quarks [11], from the same combined strong-coupling and hopping expansion techniques
that are actively being developed for cold and dense QCD [12].

Here, we revisit the low-temperature part of the QC2D phase diagram with rooted staggered
quarks. After reproducing previous results for the chiral- and diquark-condensates, the quark-
number density and the Goldstone spectrum along the µ direction at β = 1.5, we assess the in-
fluence of the lattice-artifact bulk phase dominated by Z2 monopoles. With an improved gauge
action and a somewhat larger lattice coupling of β = 1.7 on the other hand, these monopoles are
sufficiently suppressed to connect with continuum results. While this then requires a µ-dependent
additive renormalization of the chiral condensate, the extrapolated diquark condensate and quark-
number density near the onset transition at half the pion mass remain in very good agreement with
the effective field theory predictions. Beyond that one might speculate to see evidence of the BEC-
BCS crossover at larger µ , but this gets hard to disentangle from discretization artifacts at larger
µ which we assess by comparing staggered with Wilson fermions revealing significant qualitative
differences between the two fermion discretizations already well below half-filling.

Finally but maybe most importantly our prelimiary Goldstone spectrum near the onset tran-
sition provides good evidence that the symmetry breaking pattern of QC2D in the continuum is
recovered also with staggered quarks outside the bulk phase and hence in the continuum limit,
despite the wrong antiunitary symmetries of staggered fermions at finite lattice spacing [4, 5].

2. General Setup

To study the spontaneous breaking of baryon number on a finite lattice, one adds the diquark
source term ∼ λ to the Lagrangian as an explicitly symmetry-breaking external field. The staggered
fermion action of QC2D is then expressed in a Nambu-Gorkov basis as [2]

S f = χD(µ)χ +
λ

2 (χ
T

τ2χ +χτ2χ
T) = 1

2 (χ,χ
T

τ2)(
λ D(µ)

−D†(µ) λ
)

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
=∶A

(τ2χ
T

χ
) , (2.1)
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where D denotes the staggered Dirac operator, such that det A = det(D†(µ)D(µ)+λ
2). Results

are extrapolated to λ → 0, and the diquark condensate is obtained from

⟨qq⟩ = ⟨χ
T

τ2χ⟩∝ ∂ lnZ
∂λ

»»»»»»»»λ→0
. (2.2)

We use the RHMC algorithm [13] to simulate a rooted fermion determinant detAN f /8.
The prediction from the leading order chiral Lagrangian with diquark source λ for fundamental

staggered quarks in QC2D is that the vaccum rotates at fixed ⟨qq⟩2+ ⟨qq⟩2 from a chiral to a
diquark condensate with tanφ = λ/m and rotation angle α(µ) as µ increases, from α = φ for
µ = 0 to α = π/2 for µ ≫ µc = mπ/2, which is obtained from [4]

4µ
2 cosα sinα = m2

π sin(α −φ) , such that nB = 8N f F
2
µ sin2

α ,

⟨qq⟩ = 2N f Gcosα , and ⟨qq⟩ = 2N f Gsinα .
(2.3)

We fit these equations to the results from our simulations. For λ → 0 they describe the zero-
temperature onset of diquark condensation at µc = mπ/2, which is determined as a fit parameter
here and compared with an independent determination of mπ from spectroscopy as a check.

3. Results in the bulk phase

After reproducing the results from [5] for ⟨qq⟩, ⟨qq⟩ and the quark number-density ⟨n⟩ with
N f = 4 at β = 1.5, Ns = 12, Nt = 24, am = 0.025, aλ = 0.0025 as a check, we have performed the
analogous simulations with the fourth root for N f = 2, see Fig. 1. The corresponding Goldstone
spectrum is shown in Fig. 2. As for the N f = 4 results from [5] it reflects the symmetry breaking
pattern of fundamental staggered quarks (shown here as χPT fit) which resembles that of adjoint
QCD or G2-QCD in the continuum as most notably seen in the behavior of the pion branch above
the onset that here results at aµc = 0.18889(45) from the fit. Within the errors this well agrees with
our spectroscopic result from the pion correlator at µ = 0 which yields amπ/2 = 0.1887(06).
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Figure 1: Fit of lattice data to χPT predictions
of condensates and density at β = 1.5.
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Figure 2: Goldstone spectrum for Fig. 1 with-
out disconnected contributions in q̄q̄/ f0.

The scalar f0 mixes with the heavy (anti)diquark mode when baryon number is broken in the
diquark-condensation phase. The discrepancy of the corresponding q̄q̄/ f0 branch with χPT there
is to a large extend due to disconnected contributions to f0 which we did not calculate here.
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A potential problem in these simulations is the lattice-artifact bulk phase of SU(2) with Z2-
monopole condensation at strong coupling [14]. We have therefore measured the Z2-monopole
density z = 1− 1

Nc
∑c∏P∈∂c sgn(trP) sensitive to preferred signs of plaquettes on the faces of

elementary cubes c. Its dependence on the lattice coupling with and without quarks is shown in
Fig. 3. It is rather insensitive to unquenching, at β = 1.5 even with am= 0.01 (and µ = 0) we obtain
⟨z⟩ = 0.8840(1) which shows that this is well below the crossover and deep inside the bulk phase.

To suppress Z2 monopoles we therefore use a tree-level Symanzik-improved gauge action [15],
cf. Fig. 3. From extended meson spectroscopy [16] we conclude that the best compromise between
discretization and finite-volume effects with the improved action on our present 163×32 lattice is
obtained for β = 1.7, see Fig. 4. The Z2-monopole density is then down to ⟨z⟩ = 0.2734(7).
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Figure 4: Meson masses over β from [16].

4. Chiral and diquark condensates outside the bulk phase

With the improved gauge action, β = 1.7 and am= 0.01 on the 163×32 lattice, where mπ/mρ =

0.5816(27), we have then performed a low temperature scan of the phase diagram. The chiral con-
densate as a function of the quark chemical potential in units of µc is shown in Fig. 5a. Not surpris-
ingly, on the finer lattice it now requires additive renormalization. In finite temperature simulations
at µ = 0 this can be achieved with a connected susceptibility subtraction, Σ = ⟨qq⟩mq −mqχ

con, by
observing that (up to a factor mq) chiral condensate and susceptibility share the same quadratic
divergence cUV/a2 and that this mainly comes from the connected part χ

con of the latter [17]. To
see whether this subtraction can be used at finite µ as well, we also included our results for χ

con

in Fig. 5a. We observe that they both drop to zero above µc, so the quadratic divergence must
depend on µ in the diquark condensation phase,1 i.e. cUV = cUV(µ). Secondly, and more impor-
tantly, however, we also observe evidence of a singular contribution in the connected susceptibility
χ

con near the diquark-condensation transition at µ = µc, as seen from its volume dependence in
Fig. 5b. This is different from the chiral transition where the thermodynamic singularity resides in
the disconnected part of the susceptibility. It means that this singularity in χ

con will dominate over
cUV/a2 at finite a in the infinite volume limit. The chiral condensate on the other hand, at zero tem-
perature, must remain independent of µ for µ < µc. It does not have such a singular contribution

1As it also does for free lattice fermions of mass m at µ > m.
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and it would be unphysical to introduce one with the connected susceptibility subtraction. At any
rate, this would introduce a µ-dependence below µc and hence a Silver-Blaze problem. Therefore,
a different (µ-dependent) subtraction of the chiral condensate is required at finite density.
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Figure 5: ⟨qq⟩ and its connected susceptibility (163×32 lattice, am = 0.01, β = 1.7, aλ = 0.005).

The diquark condensate in Fig. 6a is unaffected by this problem. Its λ → 0 extrapolation now
yields the diquark-condensation transition at aµc = 0.1356(86) from the fit to the χPT prediction
shown in Fig. 6b. This is again consistent with the mass extracted from the pion correlator at µ = 0
giving amπ/2 = 0.1428(26) here for comparison. The sudden increase of the diquark condensate
as compared to the χPT fit at around 1.6µc was also observed in [9] and interpreted as evidence
of the BEC-BCS crossover. While this also agrees with the estimates from model predictions for
the crossover region around µ ∼ 0.8mπ [7, 8], we note however, that it might already be difficult
to disentangle from the discretization artifacts setting in at larger µ as we will discuss below. The
sharp drop of ⟨qq⟩ at µ around 7µc is close to half filling, where the quark-number density in lattice
units reaches half its saturation value of maximum fermion occupancy on the finite lattice. Both
condensates vanish at lattice saturation and other observables approach their quenched values.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  1  2  3  4  5  6  7  8  9  10

D
iq

ua
rk

 c
on

de
ns

at
e 

a3 <
qq

>

µ /µc

λ=0.001
λ=0.0025
λ=0.005

(a) µ-dependence of ⟨qq⟩ for various λ .

 0

 0.01

 0.1  0.15  0.2  0.25  0.3

D
iq

ua
rk

 c
on

de
ns

at
e 

a3 <
qq

>

aµ

λ=0.0025
λ=0.001

λ→0
fit

(b) λ → 0 extrapolation of ⟨qq⟩ with χPT fit.
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Figure 7: Comparison of two-flavor simulations from fourth-root staggered (163×32 lattice, am =

0.01) and Wilson quarks (103×20 lattice, κ = 0.124689) at finite density with β = 1.7, aλ = 0.001.

5. Staggered versus Wilson fermions at finite density

The maximum number of fermions on a finite lattice depends on the fermion discretization,
of course. In lattice units, the saturation density for Wilson fermions is a3nW

sat = 2N f Nc = 8 in our
two-flavor QC2D simulations, while for staggered fermions a3nKS

sat = Nc = 2 here, independent of
rooting. In order to compare the two discretizations without detailed mapping of the different scales
we plot the respective quark-number densities over the chemical potential in units of its value µh at
half filling, where n = nsat/2 in Fig. 7a. When they start to deviate, this can be taken as a signal of
strong discretization effects at least in one of the two.

As an example of observables which approache their quenched values with lattice saturation
we plot the Z2-monopole densities of both fermion discretizations in Fig. 7b. They start to show a
notably different qualitative behavior at µ well below µh already, before they approach saturation
where their values are both consistent with the quenched result. The same is true for the Polyakov
loop. It remains essentially independent of the chemical potential for staggered fermions as already
observed in [9]. In contrast, it is well known from many previous studies of QCD-like theories
with Wilson quarks [10, 18, 19], and the effective lattice theories for heavy quarks [11, 12], that
the Polyakov loop starts to rise in the dense phase with a peak around half filling as also observed
in Fig. 8 for our simulations with Wilson quarks on a 103×20 lattice at β = 1.7, κ = 0.124689.
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6. Summary and outlook

We have simulated two-color QCD with fourth-root staggered quarks for two flavors at finite
density. We have thereby compared results from lattice parameters employed previously at β =

1.5, deep inside the bulk phase with high Z2-monopole density, with results from an improved
gauge action together with a somewhat larger lattice coupling of β = 1.7 where Z2 monopoles are
sufficiently suppressed to extract continuum physics. We found that the connected susceptibility
subtraction used for the finite-temperature transition at low net-baryon density does not work for the
µ-dependent additive renormalization of the chiral condensate in the cold and dense matter. In the
solid-state regime around the half-filled lattice we have observed significant differences between
staggered and Wilson fermions, especially in the behavior of the Polyakov loop.

More importantly, however, our prelimiary Goldstone spectrum outside the bulk phase in Fig. 9
demonstrates that the continuum symmetry-breaking pattern of QC2D is recovered. Comparing
the pion branches of Figs. 2 and 9 in the diquark-condensation phase we observe clear indications
that the correct antiunitary symmetries of QC2D are restored also with staggered quarks in the
continuum limit. The most likely reason is the realization of charge-conjugation invariance.
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