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Relative weights approach to dynamical fermions at finite densities Jeff Greensite

The relative weights approach to the sign problem in gauge field theories [1, 2] is an approach
which maps the original lattice theory into an effective Polyakov line action (PLA), and then solves
the effective theory at finite chemical potential via mean field theory [3, 4]. The PLA SP is defined
as the theory which remains after integrating out all gauge and matter degrees of freedom, subject
to the constraint that the Polyakov line holonomies are held fixed. This is most convenient in
temporal gauge

exp[SP[Ux]] =
∫

DU0(x,0)DUkDψDψ

{
∏

x
δ[Ux−U0(x,0)]

}
eSL . (1)

Given SP at µ = 0, the action at finite µ is simply

Sµ
P[Ux,U†

x ] = Sµ=0
P [eNt µUx,e−Nt µU†

x ] . (2)

For heavy quarks, the PLA can be derived via the hopping parameter expansion [5]. We are inter-
ested in going to lighter quark masses, where that method cannot be easily applied.

Although it is difficult to compute SP directly, it is straightforward to compute derivatives of
SP with respect to small variations of the Polyakov line holonomies. Let S′L,S

′′
L be the lattice actions

in temporal gauge with U0(x,0) fixed to U ′x,U
′′
x respectively, and ∆SP = SP(U ′x)−SP(U ′′x ). Then

exp[∆SP] =

∫
DUkDψDψ eS′L∫
DUkDψDψ eS′′L

=

∫
DUkDψDψ exp[S′L−S′′L]e

S′′L∫
DUkDψDψ eS′′L

=
〈

exp[S′L−S′′L]
〉′′

, (3)

where 〈...〉′′ means the VEV in the Boltzman weight ∝ eS′′L . Now suppose Ux(λ) is some path
through configuration space parametrized by λ, and suppose U ′x and U ′′x differ by a small change in
that parameter, i.e. U ′x = Ux(λ0 +

1
2 ∆λ) , U ′′x = Ux(λ0− 1

2 ∆λ). Then the relative weights method
gives us the derivative of the true effective action SP at any point along the path:(

dSP

dλ

)
λ=λ0

≈ ∆SP

∆λ
. (4)

We find it useful to take derivatives with respect to Fourier components ak of Polyakov lines Px,
where Px ≡ 1

Nc
TrUx = ∑k akeik·x. We first set a particular momentum mode ak to zero. Call the

resulting configuration P̃x. Then define ( f . 1)

P′′x =
(

α− 1
2

∆α

)
eik·x + f P̃x

P′x =
(

α+
1
2

∆α

)
eik·x + f P̃x , (5)

which uniquely determine (in SU(2) and SU(3)) the eigenvalues of the corresponding holonomies
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Relative weights approach to dynamical fermions at finite densities Jeff Greensite

U ′x,U
′′
x . In this way we can compute

1
L3

(
∂SP

∂ak

)
ak=α

. (6)

Motivated by the known contribution of heavy-dense quarks to the effective action [5] (see
also [6]) we fit the relative weights data for the derivatives of SP to the ansatz

eSP = ∏
x

det[1+heµ/T TrUx]det[1+he−µ/T TrU†
x ]exp

[
∑
x,y

PxK(x− y)P†
y

]
(7)

for staggered, unrooted quarks to determine the parameter h and kernel K(x− y). Of course this
ansatz is not exact. An important check is to compute and compare, at µ = 0, the Polyakov line
correlator G(|x−y|) = 〈P(x)P†(y)〉 in both the PLA, and the underlying lattice gauge theory. We
gain precision by introducing an imaginary chemical potential µ/T = iθ. Construct U ′x,U

′′
x as

before, then set U ′(x,0) = eiθU ′x , U ′′(x,0) = eiθU ′′x . To lowest order in h, we then have

1
L3

(
∂SP

∂a0

)µ/T=iθ

a0=α

= 2K̃(0)α+6hcosθ , (8)

where K̃(k) is the Fourier transform of K(x). Fitting the data for the left hand side at various θ

determines h and K̃(0). Likewise, at k 6= 0 at lowest order in h

1
L3

(
∂SP

∂aR
k

)
ak=α

= 2K̃(k)α . (9)

From this we can determine K̃(k). Sample data and fits are shown in Fiig. 1.
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Figure 1: Wilson action, staggered fermions, β = 5.2, ma = 0.35, Nt = 4. (a) SP derivative with respect to
the zero mode, vs. imaginary chemical potential µ/T = iθ at a0 = 0.03. (b) SP derivative wrt ak with kL 6= 0
(mode numbers (2,1,0)), evaluated at various ak = α.

As in previous work with bosonic matter fields, we fit the data for K̃(k) by two straight lines

K̃ f it(k) =

{
c1− c2kL kL ≤ k0

d1−d2kL kL ≥ k0
, (10)
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where

kL = 2

√
3

∑
i=1

sin2(ki/2) (11)

is the lattice momentum. The last few points at lowest momenta, which do not fit on a straight line,
are handled by a long distance cutoff. Define

K(x−y) =


1
L3 ∑k K̃ f it(kL)eik·(x−y) |x−y| ≤ rmax

0 |x−y|> rmax

, (12)

and Fourier transform again to K̃(k). The parameter rmax is chosen to give a best fit to the data
points at lowest momenta.

Using this method to determine the parameter h and kernel K(|x− y|, the effective theory is
defined. We can then compute the Polyakov line correlator G(R) at µ = 0 in both the PLA and
also in the underlying lattice gauge theory, and check to see to see if they agree. The results for
gauge theories with dynamical staggered quarks, no rooting, with the Wilson action on a 163× 4
lattice volume and various gauge couplings and quark masses are shown in Fig. 2. In these cases
the agreement seems excellent. Note that the quark masses are far out of the range of validity of a
strong-coupling/hopping parameter expansion.

We also tried the Lüscher-Weisz gauge action at β = 7.0,ma = 0.3,Nt = 6. Unlike previous
cases, the couplings in the effective action are completely non-local: all spins are coupled to all
other spins, at least on a 163 lattice. In this instance we found that the simulation of the PLA
depends on the starting point; i.e. there are long-lived metastable states, persisting for many thou-
sands of sweeps (see Fig. 3). A start with Px = 0 seems to choose the phase which agrees with
underlying lattice gauge theory, while e.g. initialization at Px = 0.3 does not. This introduces an
unfortunate ambiguity: how do we pick the correct phase at µ 6= 0? It should be emphasized that
this is not a question of having a sign problem. The problem in this case arises even at µ = 0, and
is presumably connected with the highly non-local all-spins-coupled-to-all-spins character of the
effective action. It may be necessary to restrict the investigation to a parameter range where this
issue does not arise.

Leaving this ambiguity aside for the moment, and having arrived at an effective PLA, there is
still a sign problem. We deal with this via mean field theory, as discussed in [7], and in this case
the presence of many spin couplings beyond nearest neighbor is actually a great advantage. Mean
field methods were applied to such models at µ 6= 0 in [4], and the results were compared to results
obtained in the Langevin approach. It was found in that case that the mean field and Langevin
methods agree perfectly, except where the Langevin method fails due to the singular drift problem
pointed out by Mollgaard and Splittorff [8]. So this is the method we apply to solve the PLA at
µ = 0; details of the method can be found in [4].

In Fig. 4 we display the mean-field results for the VEV of Polyakov lines TrUx, TrU†
x , and the

quark number density, vs. µ/T . Note that the density has a plateau at number density = 3, which is
the expected limit for staggered fermions (no rooting) on a lattice. These results are qualitatively
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Figure 2: Comparision of Polakov line correlators in the PLA and in the underlying gauge theory (Wilson
action) at Nt = 4, for three choices of coupling and quark mass.
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Figure 3: Comparision of Polakov line correlators in the PLA and in underlying gauge theory (Lüscher-
Weisz gauge action, β = 7.0, ma = 0.3, Nt = 6). Note that the answer for the PLA depends on the initial-
ization, which implies the existence of very long-lived metastable states.

similar to what has been seen previously for heavy quarks, although the quark masses are well
outside the range of validity of the hopping parameter expansion. It is interesting to note that the
h parameter in the effective action turns out to be quite small, equal to h = 0.033 and h = 0.017 in
the two cases shown.

The Lüscher-Weisz case is more interesting. Here there are different solutions of the mean-
field consistency conditions, and if we pick the solution with the smallest VEV for the Polyakov
lines, then we find two phase transitions, seen in Figs. 5(a) and 5(b). If instead we pick the un-
physical branch, the solution is as shown in Figs. 5(c) and 5(d). Normally one would pick the
solution with the lowest free energy, and this turns out to be the unphysical branch. The solution
with the slightly higher free energy corresponds, at µ = 0, to the phase of the underlying lattice
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Figure 4: Mean field solutions for Polyakov lines and number density at finite chemical potential at the
Wilson action and Nt = 4 at β = 5.04, ma = 0.2 (subfigures a,b) and β = 5.4, ma = 0.6 (subfigures b,c).

gauge theory, and we already know that this phase is stable for as long as we have carried out the
Monte Carlo simulation. So it cannot be discarded.

The reliability of mean field theory can only be assessed where can compare our results with
some other method, and so far this is only possible at µ = 0, where we can compare Polyakov line
values obtained from mean field theory and from lattice Monte Carlo simulations. The comparison
is shown in Table 1, and it is clear that there is excellent agreement.

action Nt β ma 1
3〈TrU〉 1

3〈TrU〉m f

Wilson 4 5.04 0.2 0.01778(3) 0.01765
Wilson 4 5.2 0.35 0.01612(4) 0.01603
Wilson 4 5.4 0.6 0.01709(5) 0.01842

Lüscher-Weisz I 6 7.0 0.3 0.03580(4) 0.03212
Lüscher-Weisz II 6 7.0 0.3 0.554(1) 0.5580

Table 1: Polyakov line expectation values from numerical simulations of lattice gauge theory (column 5) ,
compared to mean field estimates (column 6). For the Lüscher-Weisz action there are multiple solutions of
the mean field equations. The solution in Lüscher-Weisz I is the one found by a search routine initialized at
u = v = 0, while the solution in Lüscher-Weisz II corresponds to initialization at u = v = 1. For Lüscher-
Weisz II, the value in column 5 was obtained from numerical simulation of the PLA, rather than the lattice
gauge theory, with Polyakov lines initialized to 0.3.

To summarize, we have extended the relative weights method to dynamical staggered fermions
in SU(3) lattice gauge theory. The data is fit to a simple ansatz motivated by the heavy quark form,
and at µ = 0 we find good agreement between Polyakov line correlators computed in the effective
action and the underlying lattice gauge theory. The effective theory can be solved at µ = 0 by a
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Figure 5: Mean field solutions for Polyakov lines and number density vs. µ in the PLA corresponding to a
Lüscher-Weisz action lattice gauge theory at β = 7.0, ma = 0.3, Nt = 6. In subfigures (a,b) the routines look
for a solution of the mean field equations closest to u = v = 0, while in subfigures (c,d) the solution closest
to u = v = 1 is chosen.

mean field technique. It would be very interesting to compare our results with those of any other
method that has been suggested for dealing with the sign problem.

In one case we have encountered an extreme example of non-local couplings, and in this case
the results of the simulation of the effective action depend on the starting point, i.e. there are very
long-lived metastable states. We will either need some criterion for selecting the correct phase in
such cases, or else restrict the method to a region of parameter space where metastable states are
not an issue.

A more detailed presentation of the results outlined here can be found in [9].
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