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even with Wilson-type quarks which violate the chiral symmetry explicitly.
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1. Introduction

Gradient flow is a kind of diffusion with a fictitious time t and the flowed fields can be viewed
as smeared fields over a range of about

√
8t in four dimensions [1, 2, 3, 4]. Because operators

constructed with the flowed fields are shown to be free from UV divergences and short-distance
singularities, the gradient flow provides us with a new non-perturbative renormalization scheme
with a physical scale of µ = 1/

√
8t. This opened us a large variety of possibilities to drastically

simplify the evaluation of physical observables on the lattice. In Ref. [5], the energy-momentum
tensor (EMT) and equation of state (EOS) in quenched QCD has been studied using the method
of [6] based on the gradient flow. In this paper, we report on our study of finite-temperature (2+1)-
flavor QCD with the gradient flow [7]. We compute EMT/EOS using the method of [8] and the
chiral condensate and its susceptibility using the method of [9].

The gradient flow we adopt is the simplest one. The gauge field is flowed as [3]

∂tBµ(t,x) = DνGνµ(t,x), Bµ(t = 0,x) = Aµ(x), (1.1)

where Gµν(t,x)≡ ∂µBν(t,x)−∂νBµ(t,x)+ [Bµ(t,x),Bν(t,x)], and

DνGνµ(t,x)≡ ∂νGνµ(t,x)+ [Bν(t,x),Gνµ(t,x)]. (1.2)

The quark fields are flowed by [10]

∂t χ f (t,x) = ∆χ f (t,x), ∂t χ̄ f (t,x) = χ̄ f (t,x)
←−
∆ , (1.3)

where χ f (t = 0,x) = ψ f (x), χ̄ f (t = 0,x) = ψ̄ f (x), and f = u, d and s, with

∆χ f (t,x)≡ DµDµ χ f (t,x), Dµ χ f (t,x)≡
[
∂µ +Bµ(t,x)

]
χ f (t,x),

χ̄ f (t,x)
←−
∆ ≡ χ̄ f (t,x)

←−
D µ
←−
D µ , χ̄ f (t,x)

←−
D µ ≡ χ̄ f (t,x)

[←−
∂ µ −Bµ(t,x)

]
. (1.4)

This simple flow dependent only on gauge fields requires wave function renormalization of the
quark fields, but besides it the finiteness of the flowed operators is preserved [10].

We use (2+1)-flavor QCD configurations generated for Refs. [11, 12] with non-perturbatively
O(a)-improved Wilson quarks and Iwasaki glue [13]. Our gauge coupling β = 2.05 corresponds
to a = 0.0701(29) fm, and our hopping parameters correspond to mπ/mρ ' 0.63 and mηss/mφ '
0.74. The bare PCAC quark masses are amud = 0.02105(17) and ams = 0.03524(26). Using
the fixed-scale approach [14, 15], we study lattices with Nt = 16, 14, · · · 4 corresponding to T =
1/(aNt) ' 174, 199, · · · 697 MeV, where the pseudo critical temperature is Tpc ∼ 190 MeV [12].
Spatial box size is 323 for finite temperature and 283 for zero temperature. To avoid unphysical
effects due to overlapped smearing,

√
8t should be smaller than the half of the lattice extents:

t ≤ t1/2 ≡
1
8

[
min

(
Nt

2
,
Ns

2

)]2

. (1.5)

See Ref. [7] for further details of the simulation parameters and algorithms, including the temper-
ature and number of configurations at each Nt .
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2. Energy-momentum tensor and equation of state

The correctly normalized EMT is given by [6, 8]

Tµν(x) = lim
t→0

{
c1(t)

[
Õ1µν(t,x)− 1

4
Õ2µν(t,x)

]
+ c2(t)

[
Õ2µν(t,x)−

〈
Õ2µν(t,x)

〉
0

]
+ c3(t) ∑

f =u,d,s

[
Õ f

3µν(t,x)−2Õ f
4µν(t,x)−

〈
Õ f

3µν(t,x)−2Õ f
4µν(t,x)

〉
0

]
(2.1)

+ c4(t) ∑
f =u,d,s

[
Õ f

4µν(t,x)−
〈
Õ f

4µν(t,x)
〉

0

]
+ ∑

f =u,d,s
c f

5(t)
[
Õ f

5µν(t,x)−
〈
Õ f

5µν(t,x)
〉

0

]}
,

with 〈· · · 〉0 standing for the expectation value at zero-temperature and

Õ1µν ≡ Ga
µρ Ga

νρ , Õ2µν ≡ δµν Ga
ρσ Ga

ρσ , Õ f
3µν ≡ ϕ f (t) χ̄ f

(
γµ
←→
D ν + γν

←→
D µ

)
χ f ,

Õ f
4µν ≡ ϕ f (t)δµν χ̄ f

←→
/D χ f , Õ f

5µν ≡ ϕ f (t)δµν χ̄ f χ f , (2.2)

where
←→
D µ ≡ Dµ −

←−
D µ , and the quark normalization factor ϕ f (t) is given by [8]

ϕ f (t)≡−
6

(4π)2 t2
〈

χ̄ f (t,x)
←→
/D χ f (t,x)

〉
0

. (2.3)

We then have p/T 4 = ∑i〈Tii〉/(3T 4), ε/T 4 =−〈T00〉/T 4 for EOS. The coefficients ci(t) are given
in [8]. Though these coefficients are calculated by perturbation theory, they are used just to guide
the t → 0 extrapolation. We thus consider that our evaluation is essentially non-perturbative. We
also emphasize that the non-perturbative beta functions or Karsch coefficients, which require a big
numerical task in conventional calculations of EOS in particular in full QCD, are not needed.

The extrapolation t→ 0 is required to remove contamination of unwanted operators. In (2.1),
the continuum extrapolation a→ 0 is assumed to be done before. In numerical studies, however,
it is often favorable to take the continuum extrapolation at a later stage of analyses. On finite
lattices with a 6= 0, we expect additional contamination of unwanted operators. Since we adopt the
non-perturbatively O(a)-improved Wilson quarks, the lattice artifacts start with O(a2). We expect

Tµν(t,x,a) = Tµν(x)+ t Sµν(x)+Aµν
a2

t
+∑

f
B f µν (am f )2 +Cµν (aT )2

+Dµν (aΛQCD)2 +a2S′µν(x)+O(a4, t2), (2.4)

where Tµν(x) is the physical EMT, Sµν and S′µν are contaminations of dimension-six operators with
the same quantum number, and Aµν , B f µν , Cµν , and Dµν are those from dimension-four operators.
To exchange the order of limiting procedures a→ 0 and t→ 0, the singular terms like a2/t have to
be removed. This is possible if we have a window in t in which the linear terms of (2.4) dominate.

In Fig. 1, we show the results of the entropy density (ε + p)/T 4 and the trace anomaly (ε −
3p)/T 4 at T ' 232 MeV as functions of t/a2. We find windows below t1/2 in which the data is
well linear. Results at other T ’s are similar, except for the case of T ' 697 MeV (Nt = 4) for
which t1/2 = 0.5 and no linear windows are found below t1/2. We perform linear extrapolations
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Figure 1: Entropy density (left) and trace anomaly (right) at T ' 232 MeV as function of the flow time t/a2.
Pair of dotted vertical lines indicates the window used for the linear fit. Errors are statistical only.
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Figure 2: Final results for entropy density (left) and trace anomaly (right) as function of temperature. Red
circles are our result using the gradient flow. Errors include the statistical error and the systematic error from
the perturbative coefficients. Black triangles are the previous result by the T -integration method [12].

t → 0 using the data in the linear window at T <∼ 497 MeV to get red circles in Fig. 2. The black
triangles are the results of our previous study of EOS with the T -integration method [12] using the
same configurations. We find that the result of the gradient flow method is well consistent with
that of the conventional method at T <∼ 279MeV. On the other hand, the two results deviate at
T >∼ 348MeV (Nt <∼ 8). This may be due to that the lattice artifact of O

(
(aT )2

)
= O

(
1/N2

t
)

in
(2.4) is non-negligible for Nt <∼ 8.1

3. Chiral condensate and its disconnected susceptibility

We then study the chiral condensate. Although the Wilson-type quarks violates the chiral
symmetry explicitly, the gradient flow method [9] enables us to directly evaluate the chiral con-
densate and its susceptibility on the lattice. We define the scalar density as the chiral rotation of
the pseudo-scalar density whose normalization is uniquely fixed by the PCAC relation. The flowed

1At T ' 464 MeV (Nt = 6), because t1/2 = 1.125 for this lattice is quite small, the window for linear extrapolation
is narrow. We also note that (ε − 3p)/T 4 has small curvature above this t1/2 [7]. The negative (ε − 3p)/T 4 at this T
shown in Fig. 2 may be suggesting that, besides the small-Nt lattice artifacts, the true linear region is hidden above t1/2.
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Figure 3: Unsubtracted (left) and VEV subtracted (right) chiral condensate at T ' 232 MeV as function of
the flow time t/a2. The vertical axis is in lattice unit. Open and filled circles are for u (or d) and s quarks,
respectively. Dotted vertical lines show the window for the linear fit. Errors are statistical only.

chiral condensate at small t and a is expected to be [9]

{
ψ̄ f ψ f

}
(t,x,a)≡ cs(t)

m̄ f
(
1/
√

8t
)

m f
[ϕ f (t) χ̄ f (t,x)χ f (t,x)]

=
{

ψ̄ f ψ f
}

MS (x)+
m f

t
N + t S′(x)+A

a2

t
+∑

f
B f (am f )2 +C (aT )2

+D(aΛQCD)2 +a2S(x)+O(a4, t2), (3.1)

cs(t)≡ 1+
ḡ
(
1/
√

8t
)2

(4π)2

[
4(γ−2ln2)+8+

4
3

ln(432)
]

(3.2)

where f = u, d and s. The coefficient cs(t) transforms the gradient flow renormalization scheme to
MS scheme such that

{
ψ̄ f ψ f

}
MS (x) is the renormalized chiral condensate in MS scheme at µ = 2

GeV. N is a contamination of dimensionless operators, S′ and S are from dimension-five operators,
and A, B f , C, and D are from dimension-three operators.

Note that, in addition to the a2/t term, m f /t term appears off the chiral limit. Existence of the
m f /t term originates from the fact that the singlet part of the scalar density possesses the quantum
number identical to the vacuum. In fact, we obtain such term by the lowest order perturbation
theory at small t. The m f /t term is an obstacle to take the t → 0 limit even in the continuum
limit. To overcome the problem, Ref. [9] suggests to subtract the T = 0 expectation value (VEV
subtraction). At a 6= 0, we have in any case the a2/t term. We test the chiral condensate both with
and without the VEV subtraction.

We show in Fig. 3 the chiral condensate at T ∼ 232 MeV as function of t/a2. Similar to the
case of EMT, we find linear windows below t1/2 in which the a2/t and m f /t terms as well as higher
orders in t seem to be well suppressed. Results at other T ’s are also similar except at T ' 697
MeV (Nt = 4) where no window was found below t1/2. Carrying out linear t → 0 extrapolations
at T <∼ 464 MeV adopting the same fit range as EMT, we obtain Fig. 4 for the renormalized chiral
condensate without and with the VEV subtraction. The condensates seem to start change at T ∼ 190
MeV, in accordance with a previous estimate of Tpc [12]. The unsubtracted chiral condensate shows
a tendency to decrease as we decrease the valence quark mass. The behavior is consistent with our
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Figure 4: Renormalized chiral condensate −〈{ψ̄ψ}(x)〉MS (µ =2GeV) in MS scheme as function of tem-
perature, obtained from the t→ 0 limit of the unsubtracted (left) and VEV subtracted (right) chiral conden-
sates. The vertical axis is in unit of GeV. Red circles are u (or d) quark condensate and black triangles are
that for s quark. Errors include the statistical error and the systematic error from the perturbative coefficients.

expectation. With the VEV subtraction, the condensate becomes almost independent of the valence
quark mass, i.e. the mass-dependent part is almost T -independent.

We now calculate the disconnected chiral susceptibility,

χdisc.
f̄ f ≡

〈[
1

NΓ
∑
x
{ψ̄ f ψ f }(x)

]2
〉

disconnected

−
[〈

1
NΓ

∑
x
{ψ̄ f ψ f }(x)

〉]2

. (3.3)

This quantity is not a physical susceptibility but may be used as a guide to detect the chiral restora-
tion transition. In the left panel of Fig. 5, the disconnected chiral susceptibility at T ' 232 MeV is
shown as function of the flow time. We find a good linear window. Results at other T ’s are agin
similar to the case of EMT. Linear t→ 0 extrapolations at T <∼ 464 MeV lead to the right panel of
Fig. 5. We find a clear peak of the susceptibility at around T ∼ 190 MeV. The peak hight shows a
tendency to increase as we decrease the valence quark mass.

4. Conclusions and discussions

We calculated EOS and chiral condensate in (2+1)-flavor QCD with improved Wilson quarks
at a single but fine lattice spacing applying the gradient flow method of Refs. [6, 8, 9]. We found
that the results of EOS by the gradient flow method are consistent with those of the T -integration
method at T <∼ 280MeV (Nt >∼ 10). Although the continuum extrapolation is not done yet, the
good agreement between the completely different methods suggests that our lattices are already
close to the continuum limit. On the other hand, deviation found at T >∼ 350MeV suggests that
the lattice artifacts of O

(
(aT )2

)
= O

(
1/N2

t
)

from the discretization of thermal modes are not
negligible at Nt <∼ 8. The chiral condensate and its disconnected susceptibility show a clear signal
of the chiral restoration crossover, even with the Wilson-type quarks. These results demonstrates
that the gradient flow is quite powerful in extracting physical observables from lattice simulations.

This work is in part supported by JSPS KAKENHI Grant No. 25800148, No. 26287040, No.
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Figure 5: Left: The same as Fig. 3 but for disconnected chiral susceptibility. In this quantity, the VEV
subtraction has no effects. Right: Renormalized disconnected chiral susceptibility in MS scheme at µ = 2
GeV as a function of temperature. The vertical axis is in unit of GeV6. Red circles are for u (or d) quark
and black triangles are for s quark. Errors include the statistical error and the systematic error from the
perturbative coefficients.
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