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We study temperature dependence of the topological susceptibility with the N f = 2+ 1 flavors

Wilson fermion. We have two major interests in this paper. One is a comparison of gluonic

and fermionic definitions of the topological susceptibility. Two definitions are related by the

chiral Ward-Takahashi identity but their coincidence is highly non-trivial for the Wilson fermion.

By applying the gradient flow both for the gauge and quark fields we find a good agreement of

these two measurements. The other is a verification of a prediction of the dilute instanton gas

approximation at low temperature region Tpc < T < 1.5Tpc, for which we confirm the prediction

that the topological susceptibility decays with power χt ∝ (T/Tpc)
−8 for three flavors QCD.

34th annual

mailto:tanigchi@het.ph.tsukuba.ac.jp


P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
0
6
4

Temperature dependence of topological susceptibility using gradient flow Yusuke Taniguchi

1. Introduction

The axion is introduced into QCD through the Peccei-Quinn mechanism to solve the strong

CP problem [1]. The effective mass squared of the axion is proportional to the topological suscep-

tibility and its temperature dependence plays a crucial role for the axion production in the early

universe at high temperature and for a possibility of the axion to be a candidate of cold dark matter.

Recently the topological susceptibility is studied at finite temperature using lattice QCD for

quenched case [2, 3, 4], for N f = 2+ 1 flavours [5, 6] and for N f = 2+ 1+ 1 flavors [7]. One of

major interests of these papers is consistency with the dilute instanton gas approximation (DIGA)

[8], which predicts a power law decay of the topological susceptibility χt ∝ (T/Tpc)
−8 at high

temperature for three flavors. The result of Ref. [5] is the decay is much more gentle than DIGA

prediction. On the other hand Ref. [6] shows the power is consistent with that of DIGA above

1.5Tpc but it is a bit more moderate for low temperature region Tpc < T < 1.5Tpc. In this paper

we focus on temperature dependence of the topological susceptibility at Tpc < T < 1.5Tpc for

N f = 2+1 QCD. Our result is the power is consistent with that of DIGA even at low temperature

region.

One of the best way to measure the topological susceptibility may be to use lattice QCD.

However there are several definitions for the topological charge on lattice. The most popular one

may be to adopt the gauge field strength FF̃ accompanied with a cooling step [9, 10, 11, 12]. In this

paper we use the definition by adopting the gradient flow [13, 14, 15]. The gauge field is flowed

with fictitious time t according to the equations [14]

∂tBµ(t,x) = DνGνµ(t,x), Bµ(t = 0,x) = Aµ(x), (1.1)

where the field strength Gνµ(t,x) and the covariant derivative Dν are given in terms of the flowed

gauge field. The topological charge density q(t,x) defined by the flowed gauge field

q(t,x) =
1

64π2
εµνρσ Ga

µν(t,x)G
a
ρσ (t,x), ε0123 = 1 (1.2)

is already renormalized [14] and its normalization is consistent with the Ward-Takahashi (WT)

identity associated with the flavor singlet chiral symmetry [16]. The topological susceptibility is

given by

χt =
1

V4

(

⟨

Q2
⟩

−⟨Q⟩2
)

=
1

V4

⟨

Q2
⟩

, Q(t) =
∫

d4xq(t,x). (1.3)

In the continuum QCD the topological susceptibility is related to the disconnected singlet

pseudo-scalar two point function [17, 18] through the chiral WT identity

⟨

∂µAa
µ(x)O

⟩

−2m⟨πa(x)O⟩+2n f δ
a0 ⟨q(x)O⟩= i⟨δ a

O⟩ , (1.4)

where a = 0 stands for the singlet and a≥ 1 for the non-singlet identity. Aa
µ(x) = ψ̄(x)T aγµγ5ψ(x),

πa(x) = ψ̄(x)T aγ5ψ(x) with T 0 = 1 and tr
(

T aT b
)

= δ ab for a,b ≥ 1. n f is a number of flavors

with degenerate mass m, which is not same as number of sea quarks necessarily. We briefly explain

the derivation in the following. We apply the integrated form of the singlet WT identify to O = Q

1
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and O = P0

−m
⟨

P0Q
⟩

+n f

⟨

Q2
⟩

= 0, (1.5)

−m
⟨

P0P0
⟩

+n f

⟨

QP0
⟩

=−
⟨

S0
⟩

(1.6)

and the non-singlet WT identity to non-singlet O = Pb

−2m
⟨

PaPb
⟩

=−
(

δ ab 2

n f

⟨

S0
⟩

+dabc ⟨Sc⟩
)

, a,b,c≥ 1, (1.7)

where Pa =
∫

d4xπa(x) and Sa =
∫

d4xψ̄(x)T aψ(x). Making use of a fact that the non-singlet flavor

symmetry is not broken we get

⟨

Q2
⟩

=
m2

n2
f

(⟨

P0P0
⟩

−n f ⟨PaPa⟩
)

, (1.8)

where sum is not taken over a. The right hand side is nothing but the disconnected contribution to

the singlet pseudo-scalar two point function.

The right hand side of (1.8) would have power divergence when calculated on lattice using the

Wilson fermion since the chiral symmetry is broken explicitly. Much efforts were payed to avoid

the difficulty [19, 20, 21]. In this paper we shall use a new method to get rid of the singularity. This

is accomplished by applying the gradient flow to the quark fields [22]

∂t χ f (t,x) = ∆χ f (t,x), χ f (t = 0,x) = ψ f (x), (1.9)

∂t χ̄ f (t,x) = χ̄ f (t,x)
←−
∆ , χ̄ f (t = 0,x) = ψ̄ f (x) (1.10)

with

∆χ f (t,x)≡ DµDµ χ f (t,x), Dµ χ f (t,x)≡
[

∂µ +Bµ(t,x)
]

χ f (t,x), (1.11)

χ̄ f (t,x)
←−
∆ ≡ χ̄ f (t,x)

←−
D µ
←−
D µ , χ̄ f (t,x)

←−
D µ ≡ χ̄ f (t,x)

[←−
∂ µ −Bµ(t,x)

]

, (1.12)

where f = u, d, s, denotes the flavor index. It is probed that any operator constructed with the

flowed quark field does not have any UV divergence when multiplied with a wave function renor-

malization factor of the quark field [22]. We adopt the wave function renormalization factor given

by Ref. [23]

ϕ f (t)≡
−6

(4π)2t2
⟨

χ̄ f (t,x)
←→
/D χ f (t,x)

⟩

0

,
←→
D µ ≡ Dµ −

←−
D µ , (1.13)

where expectation value is taken at zero temperature. In the end we need to convert the renormal-

ized operator ϕ f (t)χ f (t,x)γ5χ f (t,x) to the pseudo-scalar density which is consistent with the chiral

WT identity. This is accomplished perturbatively according to the strategy of Ref. [24] based on a

small flow time expansion [25]

mR

(

ψ f γ5ψ f

)

R
= lim

t→0
cS(t)m̄MS(1/

√
8t)ϕ f (t)χ f (t,x)γ5χ f (t,x), (1.14)

where

cS(t) = 1+
ḡMS(1/

√
8t)2

(4π)2

[

4(γ−2ln2)+8+
4

3
ln(432)

]

(1.15)

is the matching coefficient evaluated in MS scheme. ḡMS and m̄MS are the running coupling and

mass in MS scheme at renormalization scale µ = 1/
√

8t. Notice that the scheme dependence is

canceled out and the left hand side of (1.14) is scheme and scale independent.
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2. Simulation parameters

Measurements are performed on N f = 2+ 1 gauge configurations generated for Refs. [26,

27], which are open to the public on ILDG/JLDG. A non-perturbatively O(a) improved Wilson

quark action and the renormalization-group improved Iwasaki gauge action are adopted. The bare

coupling constant is set to β = 2.05, which corresponds to a = 0.0701(29) fm (1/a ≃ 2.79GeV).

The hopping parameters are set to κu = κd ≡ κud = 0.1356 and κs = 0.1351, which correspond to

heavy up and down quarks, mπ/mρ ≃ 0.63, and almost physical strange quark, mηss
/mφ ≃ 0.74.

The bare PCAC quark masses are amud = 0.02105(17) and ams = 0.03524(26).

In this study, we adopt the fixed-scale approach [28] in which the temperature T = 1/(aNt)

is varied by changing the temporal lattice size Nt with a fixed lattice spacing a. We adopt 4 ≤
Nt ≤ 16 which correspond to 174 <∼ T <∼ 697 (MeV). See Ref. [29] for temperature and number of

configurations at each Nt . Spatial box size is 323 for finite temperature and 283 for zero temperature.

To evaluate fermionic observables we use the noisy estimator method. The number of noise

vectors is 20 for each color. We adopt the third order Runge-Kutta method [14, 22] with the step

size of ε = 0.02 to solve the flow equation for both the gauge and quark fields.

For a study of the auto-correlation we perform the bin size analysis of the jackknife error. We

find that bin size of 300 in Monte Carlo time is enough for the statistical error to saturate. For the

quadratic terms of the field strength tensor Gµν(x) we adopt a combination of the clover operator

with four plaquette Wilson loops and that with four 1× 2 rectangle Wilson loops such that the

tree-level improved field strength squared is obtained [30]. The fermionic definition is applied to

n f = 2 flavors ud quark sub-system, which has degenerate mass.

3. Numerical results

In Fig. 1 we plot a distribution of the topological charge by the gluonic definition (1.2) for

T/Tpc ≃ 1.22 at flow time t/a2 = 0.02 (left panel) and 4.5 (middle). We can see dense and wide

distribution in the left panel are accumulated on integer values in the middle panel as we flow

the gauge field with a large enough time. We stop the flow before we reach the over-smeared

region t1/2 ≡ 1
8

[

min
(

Nt

2
, Ns

2

)]2
, where the typical smearing range

√
8t of the gradient flow covers

smaller side of the lattice box. The topological charges are well distributed on non-zero values for

0 <∼ T/Tpc
<∼ 1.47 but the fluctuation becomes rare for high temperature region T/Tpc

>∼ 2.44 as is

shown in the right panel.
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Figure 1: Distribution of the topological charge for T/Tpc ≃ 1.22 at flow time t/a2 = 0.02 (left panel), 4.5

(middle panel) and for T/Tpc ≃ 2.44 at t/a2 = 1.125 (right panel). Dotted vertical lines indicate integers.
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Fig. 2 is the topological susceptibility as a function of the flow time for T/Tpc ≃ 1.22 (left

panel) and T/Tpc ≃ 2.44 (right), which is defined by the gluonic operator (1.2). The susceptibility

is completely flat for T/Tpc ≃ 1.22 (left panel) at large flow time. This is consistent with the flow

time invariant property of the topological charge in the continuum limit [16]. The good property

is observed for T/Tpc
<∼ 1.47 and we adopt the value at t1/2 as our result. On the other hand the

topological susceptibility does not have a plateau even above t1/2 for T/Tpc
>∼ 1.83 as is shown in

the right panel for T/Tpc ≃ 2.44. This is supposed to be mainly due to the lattice artifact aT =

1/Nt , which becomes severe at high temperature. We give up to study the high temperature region

T/Tpc
>∼ 1.83 with the gluonic definition in this paper.

10-7

10-6

10-5

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

χ t

t/a2

T/Tpc=1.22 (Nt=12)
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10-6

10-5

 0  0.5  1  1.5  2  2.5  3
χ t

t/a2

T/Tpc=2.44 (Nt=6)

Figure 2: Topological susceptibility as a function of the flow time t/a2 for T/Tpc ≃ 1.22 (left panel) and

T/Tpc ≃ 2.44 (right panel). Dotted vertical line in the right panel indicates t1/2.

We consider the fermionic definition of the topological susceptibility using (1.8) with the gra-

dient flow renormalization (1.14). In this procedure we need to take two limits in a proper order;

the continuum limit first and t→ 0 limit later. The continuum limit is usually taken by an extrapo-

lation from more than three lattice spacings around a∼ 1 fm. It should be argued whether enough

information is given at such lattice spacings for taking t → 0 limit. For this purpose we consider

the lattice spacing and the flow time dependence of the topological susceptibility χt

χt(t,a) = χt +A
a2

t
+ tS+∑

f

B f (am f )
2 +C(aT )2 +D(aΛQCD)

2 +a2S′+O(a4, t2), (3.1)

where A, B, C, D are contributions from four dimensional operators and S, S′ are those from di-

mension six operators. The second term a2/t is the reason why we need to keep the proper order

of the limit. However this term becomes negligibly small at large t/a2. On the other hand O(t2)

term becomes dominant at such a flow time. Our conclusion is that we can exchange the order of

the limit and take t→ 0 limit first if there is a window region where both effects are negligible and

the data behaves linearly in t/a2 . The term tS is the reason why we need to take t→ 0 limit.

In Fig. 3 we plot χt(t,a) as a function of the flow time for T/Tpc ≃ 1.22 (left panel) and 2.44

(middle). The non-linear behavior near the origin may be due to the lattice artifact a2/t and that

at large flow time may be O(t2) contribution. We find a rigid window for T/Tpc
<∼ 1.83 indicated

by the vertical lines, which is set to be common for a calculation of the chiral condensate and

susceptibility in Ref. [29]. The t → 0 limit is taken by a linear fit in the window. We notice the

window should be well below the over smeared region t1/2. Unfortunately the window is obscure

for T/Tpc
>∼ 2.44 mainly due to small Nt and we could not get valid result at high temperature.
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Figure 3: Topological susceptibility as a function of the flow time t/a2 for T/Tpc ≃ 1.22 (left panel),

2.44 (middle panel). The right panel is the topological susceptibility in a unit of (GeV)4 as a function of

temperature, where gluonic and fermionic definitions are compared with DIGA result. Red and black lines

are fit of gluonic and fermionic results above Tpc. Dotted blue line is a prediction of DIGA.

The right panel of Fig. 3 is our result, where the gluonic and fermionic definition of the topo-

logical susceptibility are plotted as a function of temperature. The results from both the definitions

are consistent with each other below T/Tpc
<∼ 1.47. We fit the data at T/Tpc ≃ 1.05,1.22,1.47 with

a power of (T/Tpc)
γ . We have γ =−7.2(0.9) for the gluonic and γ =−7.3(1.7) for the fermionic

definition. These exponents are consistent with the prediction γ = 8 of DIGA in the high temper-

ature limit within statistical error. Result of DIGA is also plotted by dotted blue line, where we

adopted the same bare quark mass and Tpc ∼ 190 MeV as our simulation for the input. Although

the exponent is consistent, our numerical result is 1.8 times larger at T/Tpc ≃ 1.22.

4. Conclusions and discussions

We study temperature dependence of the topological susceptibility from two interests. One is

to compare two independent measurements of the susceptibility on lattice with Wilson fermion. We

calculate the topological susceptibility adopting the gluonic (1.2) and fermionic (1.8) definitions,

for which we apply the gradient flow. Although the gradient flow is used as a renormalization for

both definitions the procedure to extract the topological susceptibility is different. The independent

results for two definitions agree perfectly well for T/Tpc
<∼ 1.47.

The other is a test of the dilute instanton gas approximation prediction at low temperature

region Tpc
<∼ T <∼ 1.5Tpc. By fitting the lowest three data above Tpc with a power law χt ∝ (T/Tpc)

γ

the exponent is consistent with the DIAG prediction for both the definitions. The absolute value is

about two times larger than the DIGA result. In this paper we adopt a rather heavy ud quark mass

with mπ/mρ ≃ 0.63. In our future work we shall make use of ud quark mass at the physical point

and shall discuss the axion abundance in a realistic manner.
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