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In many interesting systems, the fermion determinant becomes complex and its phase plays a

crucial role in the determination of the vacuum. For instance, in finite density QCD at low tem-

perature and high density, exotic fermion condensates are conjectured to form due to such effects.

When one applies the complex Langevin method to such a complex action system naively, one

cannot obtain the correct results because of the singular-drift problem associated with the appear-

ance of small eigenvalues of the Dirac operator. Here we propose to avoid this problem by adding

a fermion bilinear term to the action and extrapolating its coefficient to zero. We test this idea

in an SO(4)-invariant matrix model with a Gaussian action and a complex fermion determinant,

whose phase is expected to induce the spontaneous breaking of the SO(4) symmetry. Our results

agree well with the previous results obtained by the Gaussian expansion method.
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1. Introduction

Monte Carlo methods are difficult to apply to a system with a complex action S because of

a notorious technical problem known as the sign problem. The importance sampling cannot be

applied since the integrand exp(−S) of the partition function cannot be regarded as the proba-

bility distribution. The complex Langevin method (CLM) [1, 2] is a promising approach to such

complex-action systems. It may be regarded as an extension of the stochastic quantization based on

the Langevin equation, where the dynamical variables of the original system are complexified and

the observables as well as the drift term are extended holomorphically by analytic continuation.

An important remaining problem of the CLM is that the method gives wrong results when

the determinant that appears from integrating out fermions takes values close to zero during the

complex Langevin simulation [3]. A theoretical understanding of this problem has been given

recently [4], where it was recognized that the probability distribution of the complexified variables

has to fall off fast enough near the singularities of the drift term in order to justify the CLM along

the line of the argument [5]. See also ref. [6] for the proposal of a new criterion for justification

based on a refined argument.

In many systems with a complex fermion determinant, its phase is expected to play a crucial

role in the determination of the vacuum. For instance, in finite density QCD at low temperature

and high density, the phase is conjectured to induce the formation of various exotic fermion con-

densates. Also in the Euclidean version of the type IIB matrix model [7] for 10d superstring theory,

the phase is conjectured to induce the SSB of the SO(10) rotational symmetry.

When one applies the CLM to these systems, the singular-drift problem occurs because of the

appearance of eigenvalues of the Dirac operator close to zero. Here we propose to avoid this prob-

lem by deforming the action with a fermion bilinear term and extrapolating its coefficient to zero.

The fermion bilinear term has to be chosen carefully in such a way that the nearly zero eigenvalues

of the Dirac operator are avoided and yet the vacuum of the system is minimally affected.

We test this idea in an SO(4)-symmetric matrix model with a Gaussian action and a complex

fermion determinant, in which the SSB of SO(4) symmetry is expected to occur due to the phase

of the determinant [8]. When one applies the CLM to this system, the singular-drift problem is

actually severe because the fermionic part of the model is essentially “massless”. Using the idea

described above, we find that the SO(4) symmetry of the original matrix model is broken spon-

taneously down to SO(2). Moreover, the order parameters thus obtained turn out to be consistent

with the prediction obtained by the Gaussian expansion method (GEM) [9]. Note that we are able

to determine the true vacuum directly without having to compare the free energy for each vac-

uum preserving different amount of rotational symmetry unlike the case with the GEM. For more

details, we refer the readers to our paper [10].

The rest of this article is organized as follows. In section 2, we define the SO(4)-symmetric

matrix model. In section 3, we explain how we apply the CLM to the SO(4)-symmetric matrix

model. In particular, we deform the action with a fermion bilinear term, which enables us to

investigate the SSB without suffering from the singular-drift problem. In section 4, we present the

results of our analysis. In particular, we extrapolate the deformation parameter to zero, and confirm

that the SSB from SO(4) to SO(2) indeed occurs in this model. Section 5 is devoted to a summary

and discussions.
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2. Brief review of the SO(4)-symmetric matrix model

The SO(4)-symmetric matrix model we study is defined by the partition function [8]

Z =
∫

dX (detD)Nf e−Sb , (2.1)

where the bosonic part of the action is given as

Sb =
1

2
N

4

∑
µ=1

tr (Xµ)
2 . (2.2)

Here we have introduced N ×N Hermitian matrices Xµ (µ = 1, . . . ,4). The Dirac operator D in

(2.1) is represented by a 2N ×2N matrix

Diα , jβ =
4

∑
µ=1

(Γµ)αβ (Xµ)i j with Γµ =

{

iσi for µ = i = 1,2,3 ,

12 for µ = 4 ,
(2.3)

where the 2×2 matrices Γµ are the gamma matrices in 4d Euclidean space after Weyl projection,

which are defined by using the Pauli matrices σi (i = 1,2,3). The model has an SO(4) symmetry,

under which Xµ transforms as a vector. The fermion determinant detD is complex in general.

The SO(4) rotational symmetry of the model is speculated to be spontaneously broken in the

large-N limit with fixed r = Nf/N > 0 due to the effect of the phase of the determinant [8]. In

the phase-quenched model, which is defined by omitting the phase of the fermion determinant, the

SSB was shown not to occur by Monte Carlo simulation [11]. We may therefore say that the SSB

should be induced by the phase of the fermion determinant. Below we restrict ourselves to the

r = 1 case, which corresponds to Nf = N.

In order to probe the SSB, we introduce an infinitesimal SO(4)-breaking mass term

∆Sb =
N

2
ε

4

∑
µ=1

mµ tr (Xµ)
2 (2.4)

in the action, where

m1 < m2 < m3 < m4 , (2.5)

and define the order parameters for the SSB by the expectation values of

λµ =
1

N
tr (Xµ)

2 , (2.6)

where no sum over µ is taken. Due to the ordering (2.5), the expectation values obey

〈λ1〉> 〈λ2〉> 〈λ3〉> 〈λ4〉 (2.7)

at finite ε . If the expectation values 〈λµ〉 (µ = 1, · · · ,4) does not approach the same value in the

ε → 0 limit after taking the large-N limit, we can conclude that the SSB occurs.

This issue has been studied in ref. [9], where explicit calculations based on the GEM were

carried out assuming that the SO(4) symmetry is broken down either to SO(2) or to SO(3). For

r = 1, the order parameters turn out be

〈λ1〉= 〈λ2〉 ∼ 2.1 , 〈λ3〉 ∼ 1.0 , 〈λ4〉 ∼ 0.8 for the SO(2) vacuum , (2.8)

〈λ1〉= 〈λ2〉= 〈λ3〉 ∼ 1.75 , 〈λ4〉 ∼ 0.75 for the SO(3) vacuum . (2.9)
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The free energy was calculated in each vacuum, and the SO(2)-symmetric vacuum was found to

have a lower value.

3. Application of the CLM to the SO(4)-symmetric matrix model

In this section, we describe how we apply the CLM to the SO(4)-symmetric matrix model

(2.1). Let us rewrite the partition function as

Z =
∫

dX w(X) , w(X) = (detD)Nf e−(Sb+∆Sb) , (3.1)

including the symmetry breaking term (2.4). Then, the drift term that appears in the Langevin

equation is given by

(vµ )i j =
∂ lnw(X)

∂ (Xµ) ji

=−N
(

1+ εmµ

)

(Xµ)i j +Nf (D
−1)iα , jβ (Γµ)βα , (3.2)

as a function of the Hermitian matrices Xµ . Note that the second term in (3.2) is not Hermitian

in general corresponding to the fact that the fermion determinant is complex. Accordingly, the

definition of Xµ and the drift term (3.2) are extended to general complex matrices 1.

Hereafter, the parameters mµ in the SO(4)-breaking term (2.4) are chosen as

(m1,m2,m3,m4) = (1,2,4,8) , (3.3)

and the Langevin step-size is chosen as ∆t = 2.0×10−4.

Let us now discuss the singular-drift problem, which is associated with the eigenvalues of the

Dirac operator D close to zero. In Fig. 1 (Left), we plot the eigenvalue distribution of the Dirac

operator obtained during the complex Langevin simulation for ε = 0.1 with N = 32. We find that

there are many eigenvalues close to zero, which suggests that the singular-drift problem occurs.

This problem actually occurs for ε ≤ 0.5, which makes the extrapolation to ε = 0 difficult.

In order to avoid this problem, we add a fermion bilinear term which deforms the Dirac oper-

ator (2.3), so that the partition function of the deformed model is defined as

Z̃ =

∫

dX w̃(X) , w̃(X) =
(

det D̃
)Nf

e−(Sb+∆Sb) ,

D̃iα , jβ =
4

∑
µ=1

(Γµ)αβ

(

(Xµ)i j +Mµδi j

)

. (3.4)

Note that the deformation explicitly breaks the SO(4) symmetry of the original model (2.1). Here

we choose the parameters Mµ in such a way that the SO(4) symmetry is broken minimally. Taking

account of the ordering (2.7), we can preserve an SO(3) symmetry at ε = 0 by choosing

Mµ = (0,0,0,mf) . (3.5)

1In order to keep the matrices X
(η)
µ (t) close to Hermitian, we use the idea of gauge cooling proposed in ref. [12].

Here we define the Hermiticity norm NH = 1
4N ∑4

µ=1 tr

[

(

Xµ −X
†
µ

)(

Xµ −X
†
µ

)†
]

, which measures the deviation of Xµ

from a Hermitian configuration, and minimize this norm using an SL(N,C) transformation after each Langevin step.
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Figure 1: The scatter plot for the eigenvalues of the Dirac operator obtained during the complex Langevin

simulation of the undeformed model (3.1) for ε = 0.1 with N = 32 (Left) and that of the deformed model

defined by (3.4) and (3.5) for ε = 0.1 with mf = 1.0 and N = 32 (Right).

We can then ask whether the SO(3) symmetry of this deformed model is spontaneously broken in

the large-N limit.

In Fig. 1 (Right), we plot the eigenvalue distribution of the Dirac operator (3.4) obtained during

the complex Langevin simulation of the deformed model for ε = 0.1 with mf = 1.0 and N = 32.

We find that the distribution is shifted in the real direction, which is understandable since, at large

mf, the eigenvalue distribution of the Dirac operator would be distributed around mf. As a result,

the distribution avoids the singularity even for ε = 0.1 in contrast to the undeformed (mf = 0) case.

Therefore, we can extrapolate ε to zero using data obtained with smaller ε for finite mf. Eventually,

we extrapolate the deformation parameter mf to zero, and compare the results with the prediction

(2.8) obtained by the GEM for the original model.

4. Results of our analysis

Let us recall that we have introduced an O(ε) mass term (2.4) for the bosonic matrices, which

breaks the SO(4) symmetry explicitly. In order to probe the SSB, we need to take the large-N limit

with fixed ε , and then make an extrapolation to ε = 0 afterwards. In what follows, we present our

results after taking the large-N limit.

When we extrapolate ε to zero, it is convenient to consider the ratio

ρµ(ε ,mf) =
〈λµ〉ε ,mf

∑4
ν=1〈λν〉ε ,mf

. (4.1)

This is motivated from the fact that the mass term (2.4) tends to make all the expectation values

〈λµ〉ε ,mf
smaller than the value to be obtained in the ε → 0 limit. By taking the ratio (4.1), the finite

ε effects are canceled by the denominator, and the extrapolation to ε = 0 becomes easier.

In Fig. 2 (Left), we plot the ratio (4.1) against ε for mf = 1.0. Using the criterion proposed in

ref. [6], we can decide which data points in the small ε region suffer from the singular drift problem

and hence should be excluded from the extrapolation to ε = 0. We find that the fitting curves for

ρ1(ε ,mf) and ρ2(ε ,mf) approach the same value at ε = 0, while the others approach smaller values.

This implies that the SSB from SO(3) to SO(2) occurs in the deformed model.
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Figure 2: (Left) The ratios ρµ(ε,mf) obtained after taking the large-N limit for the deformed model defined

by (3.4) and (3.5) are plotted against ε for mf = 1.0. The lines represent fits to the quadratic form a+bε+cε2.

(Right) The extrapolated values limε→0 ρµ(ε,mf) for the deformed model defined by (3.4) and (3.5) are

plotted against m2
f . The lines represent fits to the quadratic form a+ bx+ cx2 with x = m2

f using the data

within the region 0.4 ≤ mf ≤ 1.0.

In Fig. 2 (Right), we plot the extrapolated values limε→0 ρµ(ε ,mf) thus obtained against m2
f .

We find that our results within 0.4 ≤ mf ≤ 1.0 can be nicely fitted to the quadratic behavior,

which is motivated by a power series expansion2 of the expectation values 〈λµ〉ε ,mf
with respect to

mf. Extrapolating mf to zero, we obtain limmf→0 limε→0 ρµ(ε ,mf) = 0.328(4), 0.326(2), 0.208(2),

0.133(2) for µ = 1,2,3,4, which shows that the SO(4) symmetry of the undeformed model (mf = 0)

is spontaneously broken down to SO(2). Moreover, using an exact result ∑4
µ=1〈λµ〉 = 4+ 2r = 6

[8] for the present r = 1 case, we obtain

〈λ1〉= 1.97(2) , 〈λ2〉= 1.96(1) , 〈λ3〉= 1.25(1) , 〈λ4〉= 0.80(1) , (4.2)

which agree well with the results (2.8) obtained by the GEM. Here we emphasize that in the GEM,

the true vacuum was determined by comparing the free energy obtained for the SO(2) vacuum and

the SO(3) vacuum. In contrast, the CLM enables us to determine the true vacuum directly without

having to compare the free energy for different vacua.

5. Summary and discussion

We have shown that the CLM can be successfully applied to a matrix model, in which the

SSB of SO(4) is expected to occur due to the phase of the complex fermion determinant. For this

success, it was crucial to overcome the singular-drift problem associated with the appearance of

nearly zero eigenvalues of the Dirac operator. Our strategy was to deform the Dirac operator in

such a way that the singular-drift problem is avoided while maintaining the qualitative feature of

the vacuum as much as possible. Extrapolating the deformation parameter, we were able to obtain

the order parameters, which turned out to be consistent with the prediction by the GEM.

The CLM with the proposed strategy can be directly applied to the type IIB matrix model,

which is conjectured to be a nonperturbative formulation of type IIB superstring theory in ten

2The odd order terms in mf do not appear due to the symmetry mf →−mf of the expectation values.
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dimensions [7]. While the SO(10) symmetry of the model is expected to be spontaneously broken

down to SO(4) for consistency with our 4d space-time, the GEM predicts that it is spontaneously

broken down to SO(3) rather than SO(4). It would be interesting to investigate this issue using the

CLM extending the present work.

We consider that the same strategy would enable the application of the CLM to finite density

QCD at low temperature and high density, where various exotic condensates are speculated to form

due to the complex fermion determinant. We can try to find some deformations which allow us to

extrapolate the deformation parameter to zero within the region of validity. Here the new criterion

[6] for justifying the CLM should be useful, as it is the case in the present work [10].
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