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We study full QCD at finite density and low temperature with light quark mass using the complex
Langevin method. Since the singular drift problem turns out to be mild on a 43× 8 lattice we
use, the gauge cooling is performed only to control the unitarity norm in this exploratory study.
We report on our preliminary data obtained from the complex Langevin simulation up to certain
Langevin time. While the data are still noisy due to lack of statistics, the onset of the baryon
number density seems to occur at larger µ than half the pion mass, which is the value for the
phase quenched QCD. The validity of our simulation is tested by the recently proposed criterion
based on the probability distribution of the drift term.
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1. Introduction

In recent years we have witnessed remarkable progress in the study of systems with complex
actions by the complex Langevin method (CLM). The CLM is based on the complexification of
dynamical variables, which requires some conditions for the equivalence to the original theory. Al-
though the conditions had not been known for a long time, Ref. [1, 2] provided an explicit condition
based on an argument for justification of the CLM. In order to satisfy this condition in the case of
lattice QCD, the so-called gauge cooling was developed [3]. Thus, the complex Langevin simula-
tion for QCD was realized in the QGP phase [4, 5] and in the heavy dense limit [6] up to quite large
quark chemical potential, which goes far beyond the applicable limit of conventional approaches
such as reweighting or the Taylor expansion. The validity of the gauge cooling was also proved
explicitly [7] based on the argument for justification of the CLM. See also other contributions to
this volume for recent studies on the CLM [8, 9, 10, 11].

In this work, we apply the CLM to QCD in the confined phase with light quarks. In this
case, it is anticipated that the appearance of zero eigenvalues of the fermion matrix makes the
drift term singular and spoils the validity of the CLM. This problem was shown to occur in some
models [12, 13, 14], and possible solutions were discussed [15, 16, 17]. In this work, we perform
simulations on a 43× 8 lattice, where the singular drift problem turns out to be mild. For this
reason, we use the gauge cooling only to control the unitarity norm instead of using it also to cure
the singular drift problem as proposed in Refs. [16, 17]. The validity of our simulation is tested
by using a criterion that the probability distribution of the drift term should fall off exponentially
or faster [18], which is required for the convergence property of a power series used in a refined
argument for justification. This condition is considered a necessary and sufficient condition since
it is slightly stronger than the previous condition required for the validity of the integration by parts
[1, 2]. The newly proposed criterion is shown to be useful not only in simple one-variable models
[18] but also in systems with infinite degrees of freedom [19, 20].

We explain the framework of this work in the next section, provide preliminary results in
section 3, and draw a temporal conclusion in the final section.

2. Framework

We study QCD on a four-dimensional Euclidean lattice with the lattice spacing a, the spatial
extent Ns and the temporal extent Nt . Introducing quark chemical potential µ makes the fermion
determinant complex and spoils the importance sampling. We use the CLM to solve this problem.
When one applies the Langevin method to a theory with a complex action, the dynamical variables
in the theory have to be complexified. In lattice QCD, in particular, the space on which the link
variables Unµ take values should be extended from SU(3) to SL(3,C). Accordingly, we need to
extend the action to a function of the complexified link variables in a holomorphic manner. In this
work, we use the plaquette action

SG =−β

6 ∑
x

∑
µ>ν

tr[Ux,µν +U−1
x,µν ] (2.1)

for the gauge field, where Uxµ ∈ SL(3,C) is a link variable and Ux,µν is the plaquette given by
Ux,µν = UxµUx+µ̂ νU−1

x+ν̂ µ
U−1

xν . Fermions are implemented using the standard staggered fermion
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formalism with the fermion matrix

M(U,µ)xy = maδx,y +
4

∑
ν=1

ην(x)
2

[
eµaδν4Uxνδx+ν̂ ,y− e−µaδν4U−1

x−ν̂ν
δx−ν̂ ,y

]
, (2.2)

which represents four flavors of quarks with the mass m and the chemical potential µ . Due to the
relation εxM(µ)xyεy = M†(−µ∗)yx with the “staggered γ5 operator” εx, the fermion determinant
becomes complex for real and nonzero µ . As interesting observables, we measure the baryon
number density 〈n〉 = 1

NV Nc

∂

∂ (µa) logZ and the chiral condensate Σ = 1
NV

∂

∂ (ma) logZ, where NV =

N3
s Nt . In measuring these observables in the CLM, they should also be extended to functions of

complexified link variables in a holomorphic manner.
In the CLM including the gauge cooling procedure, the link variables are updated in the fol-

lowing two steps

Ũxν(t) = gxUxν(t)g−1
x+ν̂

, (2.3)

Uxν(t + ε) = exp

(
i

N2
c−1

∑
a=1

λa

[
−vaxν(Ũ)ε +

√
2ε ηaxν

])
Ũxν(t) , (2.4)

where t is the discretized Langevin time with the stepsize ε and λa are the Gell-Mann matrices.
Eq. (2.4) represents the Langevin equation for the link variables. The Gaussian white noise ηaxν is
real and normalized by 〈ηa′x′ν ′(t ′)ηaxν(t)〉η = 2δa′aδx′xδν ′νδt ′t , where the symbol 〈...〉η represents
an average over the noise with the Gaussian weight. The drift term is defined by

vaxν(U) = lim
δ→0

S(eiδλaUxν)−S(Uxν)

δ
, (2.5)

where S = SG−
N f
4 logdetM with N f = 4 in our case. At µ 6= 0, the action S is complex, and so is

vaxν . Therefore, the use of Eq. (2.4) makes the link variables drift away from the SU(3) manifold
in the non-compact directions.

In calculating the fermionic part of the drift term, we use the bilinear noise method, where the
trace of M is evaluated using the Gaussian noise vectors. It is known that the use of this method
in the Langevin simulation does not give rise to systematic errors in the zero stepsize limit [21],
which is in contrast to the situation in the hybrid R algorithm. While a naive implementation of
this method violates the reality of the drift term at µ = 0, there is an improved implementation that
makes the drift term real at µ = 0 [22], which we follow in our study.

Due to the complexification of dynamical variables, the gauge invariance of the action and the
observables is enhanced from SU(3) to SL(3,C). The gauge cooling represented by Eq. (2.3) is
performed by using a transformation for this enhanced symmetry. We determine gx in Eq. (2.3) in
such a way that it reduces the unitarity norm [4, 5]

Nu ≡
1

4NV
∑
x,ν

tr[(Uxν)
†Uxν +(U−1

xν )†U−1
xν −2×1l3×3] , (2.6)

which describes the deviation of Uxν from SU(3) matrices. Note that the Hermitian conjugate in
Nu is taken after the complexification and that the unitarity norm is not invariant under an SL(3,C)
transformation.
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In order to test the validity of our simulation, we calculate the probability of the drift term

p(u) =
1

4NV

〈
∑
xν

δ (u−uxν)
〉
, (2.7)

where uxν is the norm of the drift term for a link variable Uxν defined by

uxν =

√√√√ 1
N2

c −1

N2
c−1

∑
a=1
|vaxν |2 . (2.8)

Since the drift term vaxν is calculated anyway in the CLM, the calculation of p(u) does not require
significant additional cost. In order for the CLM to be valid, the probability p(u) should fall off
exponentially or faster at large u [18]. Note that the drift term vaxν contains the gauge field part and
the fermionic part. A slow fall-off of each part represents the excursion problem and the singular
drift problem, respectively. Thus the two problems that were thought to invalidate the CLM can be
probed by the above criterion in a unified manner. Without this criterion, it is not obvious to tell
whether either of these problems is really occurring or not.

3. Results

The parameters of the theory is chosen as N3
s ×Nt = 43× 8, ma = 0.05 and β = 5.7, which

corresponds to the confined phase at µ = 0. The chemical potential µ is varied in the range µa ∈
[0,0.65], which corresponds to µ/T ∈ [0,5.2]. The Langevin simulations were performed with a
fixed stepsize ε = 10−4 for the total Langevin time t = 30. For the sake of comparison, we also
study the phase quenched QCD, which is defined by replacing detM with |detM|, using the (real)
Langevin simulation with a stepsize ε = 2×10−4 for the total Langevin time t = 20. The Langevin
time history of the unitarity norm is plotted in Fig. 1, which shows that the unitarity norm is under
control during the simulations.
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Figure 1: The Langevin time history of the unitarity norm for 0.1≤ µa≤ 0.65.

Figure 2 shows the µ dependence of the baryon number density and the chiral condensate
obtained from the complex Langevin simulation of QCD. At small µ , the baryon number density
is zero and the chiral condensate is nonzero. As we increase µ , the baryon number density starts to
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Figure 2: The baryon number density (Left) and the chiral condensate (Right) are plotted against µa. The
symbol referred to as “CLM” represents the result of QCD with the CLM, while the symbol referred to as
“PQ” represents the result of the phase quenched QCD with the real Langevin method.

increase and the chiral condensate starts to decrease at some point. At µa = 0.4∼ 0.5, the baryon
number density reaches the order of 0.01, which roughly corresponds to the density for having one
baryon on the lattice, i.e., 1/N3

s = 1/43 ∼ 0.016.
In Fig. 2 we also plot the results of the real Langevin simulation for the phase quenched QCD

(PQ). We observe clear tendency that the onset value of µ at which the baryon number density
starts to increase is smaller for PQ. It is known that in PQ, the onset value is µ = mπ/2 [23], which
can be estimated as 0.265 by using the results [24] of the mean field analysis for ma = 0.05. In the
case of QCD, on the other hand, the mean field analysis [24] yields an estimate of the onset value
µa = 0.55. Our results are in reasonable agreement with these predictions considering finite size
effects, which smoothen the transition.
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Figure 3: Scatter plots of the eigenvalues of the fermion matrix M for µa = 0.4 (Left) and 0.65 (Right).

The eigenvalue distribution of the fermion matrix M is shown in Fig. 3 for µa = 0.4 and
µa = 0.65. Let us recall that the eigenvalues close to the origin make the fermionic drift term
large and cause the singular drift problem, which invalidates the CLM. In fact, we observe a gap
along the real axis at µ = 0 due to finite size effects, although the lattice setup used in this work
corresponds to the confined phase. As we increase µ , the eigenvalue distribution extends in the
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real direction and the gap becomes smaller. At µa = 0.4, the eigenvalue distribution still has a gap,
which implies that there are not so many eigenvalues close to the origin. At µa = 0.65, however,
the gap is not clear any more, and there are quite a few eigenvalues close to the origin. At even
larger µ , the gap disappears eventually. Therefore, a crucial question that arises is: up to which
value of µ our complex Langevin simulation is valid.
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Figure 4: The probability distribution of the drift terms in the log scale. Straight lines represent fits to an
exponential behavior p(u) = ae−u/b.

In order to test the validity of our simulations, we use the criterion for correct convergence
[18] based on the probability distribution p(u) of the drift term, which we plot p(u) in Fig. 4 for
µa = 0.4 and µa = 0.65 in the log scale. We find that our results can be fitted by an exponential
behavior p(u) = ae−u/b, excluding the isolated peaks observed at large u, which are not statisti-
cally significant. We have performed similar fits for all values of µ , and find that the probability
distribution is suppressed exponentially at large u for µa . 0.65. This implies that the condition
for correct convergence [18] is satisfied in this region.

4. Summary

We performed complex Langevin simulations for lattice QCD at finite density in the confined
phase on a 43×8 lattice. The gauge cooling was used only for the unitarity norm in this exploratory
study and it was found to stabilize the Langevin dynamics as in the case with the deconfined phase
[4]. Comparing QCD and the phase quenched QCD, we find that the onset of the baryon number
density occurs at larger µ in QCD than in the phase quenched QCD. The onset value for each
case agrees reasonably with the predictions of the mean field analysis. We have also measured the
probability distribution of the drift term, and confirmed that the criterion for correct convergence
proposed recently is satisfied for µa . 0.65, which covers the interesting region in the present
setup.

While our preliminary results are certainly encouraging, we also find that the auto-correlation
time at µa & 0.4 is quite long, which seems to be related the possible occurrence of the singular
drift problem at µa & 0.7. Furthermore, for a larger lattice, it is anticipated that the gap in the
eigenvalue distribution of the fermion matrix disappears, which will cause a serious singular drift
problem. We are currently trying to develop new techniques to overcome these problems.
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