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scale over which an external electric field is screened in a QCD medium. The comparison of
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mass lies above the free result (2πT ), in agreement with the O(g2) weak-coupling prediction.
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1. Introduction

The thermal screening mass connected to the conserved vector current yields an estimate for
the inverse correlation length over which an electric field is screened in a strongly interacting
medium, like the quark-gluon plasma (QGP). Screening masses can also be computed perturba-
tively in the high temperature regime of quantum chromodynamics (QCD) and thus provide a basis
for the comparison between lattice and perturbative results. In terms of spectral funtions, the an-
alytical continuation of the screening pole in the Euclidean correlator to the diffusion pole of the
retarded correlator establishes a connection of screening masses to real-time quantities, or transport
properties, of the QGP [1]. When describing a non-relativistic quark-antiquark pair one encounters
the same effective potential that enters the calculation of the dilepton production rate, a real-time
quantity of the QGP [2, 3].

For different thermal gauge theories, there are different ways to define the Debye screening
mass. In QED, for instance, k2 + Π00(0,k)|k2=−m2

E
= 0 defines the static Debye screening mass mE

as the pole of the longitudinal static photon self-energy [4]. For QCD, however, the chromo-electric
Debye mass can be extracted from the correlation function of the imaginary part of the trace of the
Polyakov loop which is odd under Euclidean time-reversal [5].

The vector screening mass MV explored here corresponds to the inverse of the screening length
of an external U(1) electric field in the QGP. It can be extracted from the flavour non-singlet
vector correlator computed in lattice QCD. The singlet contribution is expected to be small at high
temperature.

2. Effective approach

We are interested in investigating the screening of a U(1) electric field in the QGP in terms of
the non-singlet vector correlator. The intermediate screening state is described by either an effec-
tive field theory or a lattice QCD approach. In this section, we want to introduce and motivate an
effective description of the system, see refs. [2, 6]. The scale hierarchy we can exploit is usually ex-
pressed as g2T � gT � 2πT and separates the non-perturbative ultrasoft chromo-magnetic modes
at scale ∼ g2T from the intermediate soft chromo-electric modes at ∼ gT [7]. Both scales are in-
cluded in the dimensionally-reduced effective theory we will employ, and the hard scale ∼ 2πT
enters through perturbative matching. The chromo-electric Debye screening mass mE associated
with the gT scale enters into an effective one-gluon exchange potential. One finds [7]

m2
E = g2T 2

(
Nc

3
+

N f

6

)
. (2.1)

Following [2], the thermal flavour non-singlet vector current correlator is defined as

G(kn)
µν (z) =

∫
β

0
dτeiknτ

∫
x

〈(
ψγµψ

)
(τ,x,z)(ψγνψ)(0)

〉
, (2.2)

where x = (x1,x2)
T constitutes a transverse plane orthogonal to the z direction. By decomposing

the quark fields into their Matsubara modes as

ψ(τ) = T ∑
pn

e−ipnτ
ψ pn

, ψ(τ) = T ∑
pn

eipnτ
ψpn , (2.3)
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Figure 1: Non-relativistic auxiliary fields in the transverse plane exchanging one gluon. The quark-antiquark
pair propagates in the z direction.

the screening correlator is re-expressed as

G(kn)
µν (z) = T

∫
x

〈
V (kn)

µ (x,z)V (−kn)
ν (0)

〉
, (2.4)

where

V (kn)
µ (x,z) = T ∑

pn

ψ pn
(x,z)γµψpn−kn(x,z). (2.5)

Fig. 1 depicts the quark and antiquark in the transverse plane. With the quark modes carrying
frequencies of order ∼ πT , the fields can be dimensionally reduced. As a result we have 2+ 1-
dimensional non-relativistic fields

ψ =
1√
T

(
χ

φ

)
. (2.6)

This motivates a hydrogen-atom inspired picture for the two-quark bound state in an effective one-
gluon exchange potential. The quarks circle each other in the transverse plane orthogonal to the
screening direction z. Their chromo-electric Debye mass mE enters in the one-gluon exchange
potential as

V+
LO(y) =

g2
ECF

2π

[
log
(mEy

2

)
+ γE +K0(mEy)

]
, (2.7)

with g2
E = g2T the effective coupling of our dimensionally reduced theory, CF = N2

c−1
2Nc

, y = |y| and
K0 a modified Bessel function. This potential also enters the calculation of the dilepton production
rate as was shown in [2, 3] and can be defined non-perturbatively. According to this picture one
requires the solution of the radial part of a homogeneous Schrödinger equation:{

− d2

dy2 −
1
y

d
dy

+
l2

y2 +ρ

(
2πV+

LO

g2
ECF

− Ê(l)
)}

Rl = 0 (2.8)

with dimensionless quantities y = mEy, ρ = g2
ECFMr/(πm2

E) and g2
E = g2T . The first step is to find

the (physical) ground-state energy Ê(l) of eq. (2.8), which is used to compute the full energy Efull

via

Efull = Mcm +
g2

ECF

2π
Ê(l) ,

Mcm = kn +
m2

∞

2Mr
, m2

∞ =
g2T 2CF

4
, Mr =

(
1
pn

+
1

kn− pn

)−1

. (2.9)
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Figure 2: Left: static case (n = 0) with both quarks carrying momenta of πT each in opposing directions.
Right: non-static case (n = 1) with both quarks carrying momenta of πT each in the same direction.

Efull can now be understood as the screening mass of the U(1) electric field in the medium.
Another interesting object to study is the screening amplitude. The screening correlator ex-

hibits the long-distance behaviour

−
G(kn)

00 (z)
T 3 ≈

Ncm2
EA +

0
πT 2 e−|z|E

(l=0)
0 ,

−G(kn)
T (z)
T 3 ≈

Ncm4
EA +

1
πT 2

[
1
p2

n
+

1
(kn− pn)2

]
e−|z|E

(l=1)
0 (2.10)

with

A +
0 =

|R0(0)|2∫
∞

0 dyy|R0(y)|2
, A +

1 =
|R′1(0)|2∫

∞

0 dyy|R1(y)|2
(2.11)

for S-wave (l = 0) and P-wave (l = 1) channels, respectively.
The situation and the form of the long-distance correlators are quite similar in the static case:

both quarks carry momenta of πT but in opposite directions as illustrated in fig. 2. It is important
to keep in mind that in the static and the non-static sectors the role of the longitudinal and the trans-
verse parts of the correlator are reversed and it is a different potential that describes the interaction
of the quark-antiquark pair.

3. Lattice calculation

We simulate the system of interest on a lattice of space-time volume V = (Nτa)× (Nσ a)3 =

16a×(64a)3. Using previous lattice simulations with O7 parameters (see [2] and refs. therein) and
the running of the coupling g2

0 with the lattice spacing extrapolated from the data in [8], the lattice
spacing is estimated to be a≈ 0.024fm corresponding to a temperature of T = (Nτa)−1∼= 508MeV.
The lattice was generated with N f = 2 non-perturbatively O(a)-improved Wilson fermions. We
use the plaquette gauge action with β = 6/g2

0 = 6.038 [8]. The critical hopping parameter κc is
extrapolated from the data in [9] keeping the 2-loop coefficients for amc = 1/(2κc)− 4 obtained
from [10, 11]. The clover term is set to csw = 1.51726 using the non-perturbative tuning relations
of [12]. With the chosen hopping parameter κ = 0.136238 we measure an MS mass of mMS(µ =

2GeV)/T ≈ 0.04, whereby we follow the conversion of the bare subtracted quark mass to the MS
mass of [9]. The measurements were carried out exploiting Ncfg = 345 configurations and Nsrc = 64
random sources.

We describe the screening correlator of eq. (2.2) by a two-state fit,

G(kn)
µν (z) =

2

∑
n=1

An
cosh[Mn(z−Lz/2)]

sinh[MnLz/2]
. (3.1)
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Figure 3: Static (n = 0) screening masses at a temperature of T = 508MeV. Left panel: transverse (S-wave)
channel. Right panel: longitudinal (P-wave) channel.

The effective screening mass M1 we extract from the fit is an estimate for the inverse screening
length of the U(1) electric field in the QGP and the excited-state mass M2 corrects for the leading
excited-state contamination at long distances.

We are now in the position to compare the results of the two approaches in order to determine
how well the effective perturbative description coincides with the lattice data. In a previous study
[2] this comparison was done for temperatures of T = 254MeV and T = 338MeV. In the static
transverse channel the lattice result lies below the 2πT -line for both temperatures whereas the
perturbative result lies above it. The tendency, however, of the lattice data is to eventually cross
the 2πT -line at a certain temperature. This behaviour is confirmed by the new lattice data set at
T = 508MeV, shown on the left of fig. 3. This observation is consistent with the expectation that,
the higher the temperature, the more accurate the perturbative description becomes. The agreement
is less good in the static longitudinal channel, see fig. 3, while in both cases the perturbative results
agree with the lattice data by less than 10%. The results obtained by the two different approaches
in the non-static longitudinal channel with n = 1 agree quantitatively, see fig. 4 (left). Both values
are above 2πT and are compatible within errors. In the transverse channel of the non-static vector
screening correlator the two effective masses are close, although the lattice signal deteriorates as z
approaches Lz/2, see also fig. 4.

Fig. 5 gives an overview of the spectra at T = 254, 338 and 508MeV. It is evident that the
agreement between lattice field theory and effective field theory is improved for higher tempera-
tures. For the highest temperature, in the static sector, n = 0, the transverse effective mass lies
above the 2πT -line, in qualitative agreement with perturbation theory, and in the non-static sector,
n = 1, the longitudinal effective masses obtained from an effective and a lattice approach agree
quantitatively. Since the coupling is smaller for higher temperatures, the difference from 2πT for
the perturbative results decreases with higher temperatures whereas the lattice data stays the same,
as can be seen in the longitudinal channel of the static sector, n = 0. The perturbative results in
both the longitudinal and the transverse channel of the non-static sector, n = 1, at T = 508MeV
are systematically shifted to lower values compared to the same data at the lower temperatures
T = 254 and 338MeV. For these temperatures a non-perturbative EQCD potential enhanced the
agreement of lattice QCD and effective field theory results in the non-static sector, n = 1, whereas
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Figure 4: Non-static (n=1) screening masses at a temperature of T = 508MeV. Left panel: longitudinal
(S-wave) channel. Right panel: transverse (P-wave) channel.
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Figure 5: Comparison of the masses at different T . Results of the left and middle panels are from [2].

only a leading order potential was available for the comparison at T = 508MeV.
Interpreting the amplitudes, as obtained from eq. (2.11) and the lattice formulation eq. (3.1),

in terms of the quark-antiquark picture, they give an estimate on how tightly bound the quark-
antiquark pair is. At the lower temperatures examined in [2] the amplitudes were higher compared
to the present study. In this picture, this indicates that at higher temperatures the two quarks are
more loosely bound; the bound state is more extended in the (x,y) plane. Although the agreement
between lattice and effective field theory is worse than for the masses (see fig. 6), there is noticeable
improvement when comparing to the results gained for the amplitudes in the previous study [2] at
a lower temperature. As compared to the masses, it is more difficult to establish good agreement
between lattice and perturbative results for the amplitudes. This is because the leading order value
of the mass scales as 2πT whereas the amplitudes scale as∼ g2 or∼ g4, and are thus more sensitive
to uncertainties in the value of the running coupling.

4. Summary and outlook

In this comparative study, both an effective and a lattice approch were implemented in order
to examine the effective vector screening mass as the inverse of the effective screening length of
a U(1) electric field in the medium. At the temperature of T = 508MeV the lattice result in the
transverse channel of the static sector lies above the 2πT -line and therefore agrees better with the
perturbative description than at the lower temperatures from a previous study [2]. In the case of the
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Figure 6: Comparison of the amplitudes at T = 508MeV.

amplitudes of the screening states there is less good agreement between the effective and the lattice
theory than for the masses. The agreement is better, however, than for the case of the amplitudes at
lower temperatures, see [2]. It was observed earlier, using staggered fermions [13], that the lowest
screening mass lies above the 2πT threshold for a sufficiently high temperature. The present study
confirms this observation on fine lattices and with O(a)-improved Wilson fermions.

A possible future application of screening masses could be their analytic continuation in the
Matsubara frequency in order to extract the diffusion coefficient, see [1, 3].
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