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1. Introduction

The temperature and density dependence of bulk thermodynamic quantities, commonly sum-
marized as the equation of state (EoS), provide the most basic characterization of equilibrium
properties of strong-interaction matter. Quite recently, continuum extrapolated results for the EoS
of QCD with physical light and strange quark masses have been obtained at vanishing chemical
potentials [1, 2]. Bulk thermodynamic observables such as pressure (P), energy density (ε) and en-
tropy density (s) and other quantities have been calculated. In accordance with the analysis of the
chiral transition temperature, Tc ' (154± 9) MeV [3], these observables change smoothly in the
transition region. At low temperature they are found to be in quite good agreement with hadron res-
onance gas (HRG) model calculations, although some systematic deviations have been observed,
which may be attributed to the existence of additional resonances which are not taken into account
in HRG model calculations based on well established resonances listed in the particle data tables
[4, 5].

While the EoS at vanishing chemical potentials provides important input to the modelling of
the hydrodynamic evolution of the matter created in heavy ion collisions at the LHC and the highest
RHIC beam energies, knowledge of the EoS at non-vanishing baryon (µB), strangeness (µS) and
electric charge (µQ) chemical potentials is indispensable at the conditions met in the beam energy
scan (BES) at RHIC. Due to the well-known sign problem for lattice QCD formulations at non-zero
chemical potential a direct calculation of the EoS at non-zero µB, µQ or µS is unfortunately not yet
possible. At least for small values of the chemical potentials this can be circumvented by using
a Taylor expansion of the thermodynamic potential [6, 7]. Yet, if one wants to cover the range of
chemical potentials, 0≤ µB/T<∼ 3 that is expected to be explored with the BES at RHIC by varying
the beam energies in the range 7.7 GeV ≤ √sNN ≤ 200 GeV results for higher than second order
expansion coefficients are clearly needed. In this work we want to present our results for (and only
for) the EoS at non-vanishing chemical potentials in Taylor expansions up to sixth order. A full
account including more results and a comprehensive set of references is given in [8].

2. Outline of the Calculation

Our goal is the calculation of Taylor expansion coefficients for basic bulk thermodynamic
observables of strong-interaction matter in terms of chemical potentials µX for conserved charges
(X = B, Q, S). We start with the expansion of the pressure, P, in terms of the dimensionless ratios
µ̂X ≡ µX/T ,

P
T 4 =

1
V T 3 lnZ (T,V, µ̂u, µ̂d , µ̂s) =

∞

∑
i, j,k=0

χ
BQS
i jk

i! j!k!
µ̂

i
Bµ̂

j
Qµ̂

k
S , (2.1)

with χ
BQS
000 ≡ P(T,0)/T 4 and the chemical potentials for the conserved charges of course be-

ing related to the quark chemical potentials, µu = 1/3µB + 2/3µQ, µd = 1/3µB − 1/3µQ, and
µs = 1/3µB−1/3µQ−µS. The expansion coefficients χ

BQS
i jk , i.e. the so-called generalized suscep-
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tibilities, can be calculated at vanishing chemical potential1,

χ
BQS
i jk ≡ χ

BQS
i jk (T ) =

∂P(T, µ̂)/T 4

∂ µ̂ i
B∂ µ̂

j
Q∂ µ̂k

S

∣∣∣∣∣
µ̂=0

. (2.2)

While it is straightforward to obtain the Taylor series for the number densities from Eq. 2.1 ,

nX

T 3 =
∂P/T 4

∂ µ̂X
, X = B, Q, S . (2.3)

energy (ε) and entropy (s) densities require derivatives of the generalized susceptibilities with re-
spect to temperature. These are the expansion coefficients of the trace anomaly,

∆(T, µ̂B, µ̂Q, µ̂S)≡
ε−3P

T 4 = T
∂P/T 4

∂T
=

∞

∑
i, j,k=0

Ξ
BQS
i jk

i! j!k!
µ̂

i
Bµ̂

j
Qµ̂

k
S , (2.4)

with i+ j+ k even and

Ξ
BQS
i jk (T ) = T

dχ
BQS
i jk (T )

dT
. (2.5)

With this one finds for the Taylor expansions of e.g. the energy density,

ε

T 4 =
∞

∑
i, j,k=0

Ξ
BQS
i jk +3χ

BQS
i jk

i! j!k!
µ̂

i
Bµ̂

j
Qµ̂

k
S . (2.6)

In a heavy ion collision, electric charge and strangeness chemical potentials are fixed by ad-
ditional constraints and become functions of the baryon chemical potential and temperature. More
generally, we consider here constraints that can be fulfilled order by order in the Taylor series ex-
pansion. Thus, for the construction of the 6th order Taylor series of the pressure in terms of µ̂B we
need to know the expansion of µ̂Q(T,µB) and µ̂S(T,µB) up to fifth order in µ̂B,

µ̂Q(T,µB) = q1(T )µ̂B +q3(T )µ̂3
B +q5(T )µ̂5

B + . . . ,

µ̂S(T,µB) = s1(T )µ̂B + s3(T )µ̂3
B + s5(T )µ̂5

B + . . . . (2.7)

The above parametrization includes the cases of vanishing electric charge and strangeness chemical
potentials, µQ = µS = 0, as well as the strangeness neutral case with fixed electric charge to baryon-
number ratio.

Implementing the constraints specified in Eq. 2.7 in the Taylor series for e.g. the pressure one
obtains a series in terms of the baryon chemical potential only,

P(T,µB)

T 4 − P(T,0)
T 4 =

∞

∑
k=1

P2k(T )µ̂2k
B , (2.8)

where the P2k are somewhat more complicated expressions involving qi and si. These and other
formulae for number density as well as energy density and entropy are given in full detail in [8].

1We often suppress the argument (T ) of the generalized susceptibilities. We also suppress superscripts and subscripts
of χ

BQS
i jk whenever one of the subscripts vanishes, e.g. χ

BQS
i0k ≡ χBS

ik .
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The generalized susceptibilities χ
BQS
i jk have been calculated on gauge field configurations gen-

erated for (2+1)-flavor QCD using the Highly Improved Staggered Quark (HISQ) action [9] and the
tree-level improved Symanzik gauge action. All calculations are performed using a strange quark
mass ms tuned to its physical value. We performed calculations with two different light to strange
quark mass ratios, ml/ms = 1/27 and 1/20. The former corresponds to a pseudo-scalar Goldstone
mass, which in the continuum limit yields a pion mass mπ ' 140 MeV, the latter leads to a pion
mass mπ ' 160 MeV. These parameters are fixed using the line of constant physics determined by
HotQCD from the fK scale. More details on the scale determination are given in [3].

All calculations have been performed on lattices of size N3
σ Nτ with an aspect ratio Nσ/Nτ = 4.

We perform calculations in the temperature interval T ∈ [135 MeV,330 MeV]. At temperatures T ≤
175 MeV all calculations have been performed with the lighter, physical quark mass ratio ml/ms =

1/27. In the high temperature region quark mass effects are small and we based our calculations
on existing data sets for ml/ms = 1/20, which have previously been generated by the HotQCD
collaboration and used for the calculation of second order susceptibilities [10]. These data sets
have been extended for the calculation of higher order susceptibilities. Gauge field configurations
are stored after every 10th molecular dynamics trajectory of unit length.

On lattices with temporal extent Nτ = 6 and 8 all 4th and 6th order expansion coefficients have
been calculated. In these cases we gathered a large amount of statistics. At low temperatures we
have generated up to 1.2 million trajectories for Nτ = 6 and up to 1.8 million trajectories for Nτ = 8.
At high temperature less than a tenth of this statistics turned out to be sufficient. The 2nd order
expansion coefficients have been calculated on lattices with temporal extents Nτ = 6, 8, 12, 16.
At fixed temperature this corresponds to four different values of the lattice cut-off, which we used
to extract continuum extrapolated results for the second order expansion coefficients. We also
extrapolated results for the higher order expansion coefficients to the continuum limit. However,
having at hand results from only two lattice spacings for these expansion coefficients we consider
these extrapolations as estimates of the results in the continuum limit.

The traces of all operators needed have been calculated stochastically. For the calculation of
2nd and 4th order coefficients we follow the standard approach of introducing a chemical potential
as an exponential prefactor for time-like gauge field variables [11], which insures that all observ-
ables calculated are free of ultra-violet divergences. For the calculation of the 6th order coefficients
we use the so-called linear-µ approach [12, 13] as no ultra-violet divergences appear in 6th order
cumulants and above. In the linear-µ formulation the number of operators that contribute to cu-
mulants is drastically reduced. The final error on the traces depends on the noise due to the use
of stochastic estimators for the inversion of the fermion matrices M f , f = l,s, as well as on the
gauge noise. Among all the operators calculated, D1 = trM−1

f dM f /dµ f is the one most sensitive
to stochastic noise. This operator has therefore been measured using 2000 random noise vectors.
For the calculation of traces of all other operators we used 500 random noise vectors. This suffices
to reduce the stochastic noise well below the gauge noise.

All fits and continuum extrapolations shown in the following are based on spline interpolations
with coefficients that are allowed to depend quadratically on the inverse temporal lattice size. Our
fitting ansatz and the strategy followed to arrive at continuum extrapolated results are described in
detail in Ref. [2]. For the current analysis we found it sufficient to use spline interpolations with
quartic polynomials and 3 knots whose location is allowed to vary in the fit range.
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Figure 1: Left: The leading order (O(µ2
B)) correction to the pressure calculated at zero baryon chemical

potential versus temperature. Right:The ratio of fourth and second order cumulants of net-baryon number
fluctuations (χB

4 /χB
2 ) versus temperature. The yellow boxes indicate the transition region, Tc = (154±

9) MeV, grey bands show continuum extrapolation and estimate resp.. The black lines denote the Hadron
Resonance Gas (HRG) model calculation and the free quark gas limit.

3. Results

First we will show the results for the baryon cumulants. In Fig.1 (left) the second order co-
efficient χB

2 is shown over a wide range of temperatures. From the lattices with temporal extent
up to 16 is it seen that the lattice artefacts are quite small and allow for a safe extrapolation to the
continuum limit. At temperatures below the transition regime, indicated by the yellow box, the
agreement with a Hadron Resonance Gas (HRG) model calculation based on the states as given by
the Particle Data Group (PDG) is also good. However, at closer look, see [8], the existence of more
hadron states is prefered by the lattice data. On the right the next order coefficient χB

4 is shown
normalized to χB

2 . Here the deviation from the HRG starts at the lower end of the transition range
and becomes as large as about 60 % already at a temperature of 165 MeV.

We first discuss the case of vanishing potentials for strangeness and electric charge µS = µQ =

0. In this case the lowest order terms for the contributions from non-vanishing baryon potential are
easily obtained as

P(T,µB)−P(T,0)
T 4 =

χB
2
2

(
µB

T

)2
[

1+
1
12

χB
4

χB
2

(
µB

T

)2
]

(3.1)

indicating already the suppression of higher orders for moderate values of the baryon potential.
This is corroborated in Fig.2 where total pressure and total energy density are shown for various
values of µB/T from the Taylor expansion up to and including sixth order. Note that the size of
the contribution from non-vanishing µB is quite small in absolute numbers relative to the result at
µB = 0, and also the error is dominated by the one in this limit.

Secondly, we will briefly discuss the situation as it is met in heavy-ion collisions. Here the
thermal system is supposed to be strangeness neutral, i.e. the strangeness density nS is zero, and
the ratio between electric charge and baryon density is fixed, in most cases to nQ/nB = 0.4. These
are two constraints which lead to elimination of the electric charge and the strangeness chemical
potential, in favor of the baryon one, i.e. to relations Eq.2.7 with fixed (and case dependent)
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Figure 2: Left: The total pressure in (2+1)-flavor QCD in O(µ̂6
B) for several values of µB/T . Right: The

total energy density in (2+1)-flavor QCD in O(µ̂6
B) for several values of µB/T . The results for µ̂B = 0 are

taken from Ref. [2].

coefficients qi,si. In Fig.3 (left) we show the µB dependent contributions to the pressure as a
function of temperature for different values of µB/T in dependence of what order in the Taylor
expansion has been taken into account. As can be seen, for µB/T = 1 the higher than lowest orders
don’t contribute visibly. This changes slightly with larger values of µB/T but even at µB/T = 2
the fourth order calculation seems to be sufficient. Finally, in Fig.3 (right) we show total energy
and total pressure at two values of µB. As above also here current errors on the total pressure and
energy density are dominated by errors on these observables at µB = 0. In the figure we also show
the results coming from analytically continued results obtained within the stout discretization at
imaginary potential [14]. The total pressure agrees quite well, although the results obtained from
the analytic continuation within the stout scheme tend to stay systematically below the central
values obtained from the analysis of Taylor series expansions in the HISQ discretization.

4. Conclusion

We have presented results on the QCD equation of state obtained from a sixth order Taylor-
expansion of the pressure of (2+1)-flavor QCD with physical light and strange quark masses. We
considered expansions at vanishing strangeness and electric charge chemical potential µS = µQ = 0
as well as for strangeness neutral systems nS = 0 with a fixed electric charge to net baryon-number
ratio, nQ/nB = 0.4, which is appropriate for situations met in heavy ion collisions. The results,
however, can easily be extended to arbitrary ratios of nQ/nB. All results discussed here indicate
that the present order of expansion works reliably up to µB ≤ 2T .
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Figure 3: Left: The µB dependent contribution to the pressure for several values of the baryon chemical
potential in units of temperature. Right:The total energy density (upper two curves) of (2+1)-flavor QCD for
µB/T = 0 and 2, respectively. The lower two curves show corresponding results for three times the pressure.
The dark lines show the results obtained with the stout action from analytic continuation with sixth order
polynomials in µ̂B [14].
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