
P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
1
0
1

Lambda-Nucleon and Sigma-Nucleon interactions
from lattice QCD with physical masses

Hidekatsu Nemura∗,a Sinya Aoki,ab Takumi Doi,c Shinya Gongyo,d Tetsuo Hatsuda,ce

Yoichi Ikeda, f Takashi Inoue,g Takumi Iritani,c Noriyoshi Ishii, f Takaya Miyamoto,b

Keiko Murano f and Kenji Sasakib
a Center for Computational Sciences, University of Tsukuba,Ibaraki, 305-8577, Japan
b Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University,
Kyoto, 606-8502, Japan

c Theoretical Research Division, Nishina Center, RIKEN, Saitama, 351-0198, Japan
d CNRS, Laboratoire de Mathématiques et Physique Théorique,Universitéde Tours, Tours,
France

e iTHES Research Group, RIKEN, Saitama, 351-0198, Japan
f Research Center for Nuclear Physics (RCNP), Osaka University, Osaka 567-0047, Japan
g Nihon University, College of Bioresource Sciences, Kanagawa 252-0880, Japan

E-mail: nemura.hidekatsu.gb@u.tsukuba.ac.jp

We present our recent study on baryon-baryon (BB) interactions from lattice QCD with almost

physical quark masses corresponding to(mπ ,mK) ≈ (146,525) MeV and large volume(La)4 =

(96a)4 ≈ (8.1 fm)4. In order to perform a comprehensive study ofBB interactions based on lattice

QCD calculation with almost physical masses and to make better use of such large scale computer

resources, a large number ofBB interactions fromNN to ΞΞ are calculated simultaneously. In

this report, we focus on the strangenessS= −1 channels of the hyperon interactions by means of

HAL QCD method. The coupled-channel HAL QCD method is brieflyoutlined. The snapshots

of central and tensor potentials in1S0 and3S1−3 D1 channels are presented forΛN, ΣN (both the

isospinI = 1/2,3/2) and their coupled-channel systems.
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1. Introduction

Precise determination of theΛ-nucleon (ΛN) and theΣ-nucleon (ΣN) interactions provides a
significant impact for understanding how the hypernuclear systems are bound. It has been pointed
out that aΛN−ΣN coupled-channel interaction plays a vital role to have a hypernucleus being
bounded[1]. A recent experimental study shows a tendency to repulsive Σ-nucleus interaction and
only a four-bodyΣ-hypernucleus (4ΣHe) has been observed; those suggest a repulsive nature of the
ΣN interaction. Such understanding is useful to study properties of hyperonic matters inside the
neutron stars, though a hyperonic equations of state (EOS) employed in such a study may contradict
a recent observation of a massive neutron star heavier than 2M⊙ [2, 3].

In the recent years, a new lattice QCD approach to study the hadronic interactions has been
proposed[4, 5]. In this approach, the interhadron potential is obtainedby means of the lattice
QCD measurement of the Nambu-Bethe-Salpeter (NBS) wave function. Theobservables such
as the phase shifts and the binding energies are calculated by using the resultant potential[6]. This
approach has been further extended and applied to various problems. See Refs.[7, 8] and references
therein for the state-of-the-art outcomes. In addition, a large scale lattice QCD calculation is now in
progress[9] to study the baryon interactions fromNN to ΞΞ by measuring the NBS wave functions
for 52 channels from the 2+1 flavor lattice QCD.

The purpose of this report is to present our recent calculations of theΛN potentials as well as
theΣN (both the isospinI = 1/2,3/2) potentials using full QCD gauge configurations. Several ear-
lier results had already been reported at LATTICE 2008, LATTICE 2009 and LATTICE 2011[10]
with heavier quark masses and smaller lattice volumes. This report shows the latest results of
those studies, based on recent works reported at LATTICE 2013[11, 12]; ΛN−ΛN, ΛN−ΣN,
andΣN−ΣN (bothI = 1/2 and 3/2) potentials are studied at almost physical quark masses corre-
sponding to (mπ ,mK)≈(146,525)MeV and large volume(La)4 = (96a)4 ≈ (8.1 fm)4.

2. Outline of the HAL QCD method

In order to study the nuclear force using the HAL QCD approach, we first define the equal
time NBS wave function in particle channelλ = {B1,B2} with Euclidean timet[4, 5]

φλE(~r)e−Et = ∑
~X

〈

0
∣

∣

∣
B1,α(~X +~r, t)B2,β (~X, t)

∣

∣

∣
B = 2,E,S, I

〉

, (2.1)

whereB1,α(x) (B2,β (x)) denotes the local interpolating field of baryonB1 (B2) with massmB1 (mB2),

andE =
√

k2
λ +m2

B1
+

√

k2
λ +m2

B2
is the total energy in the centre of mass system of a baryon

numberB = 2, strangenessS, and isospinI state. ForB1,α(x) andB2,β (x), we employ the local
interpolating field of octet baryons given by

p=εabc(uaCγ5db)uc, n=−εabc(uaCγ5db)dc, Σ+ =−εabc(uaCγ5sb)uc, Σ−=−εabc(daCγ5sb)dc,

Σ0= 1√
2
(Xu−Xd) , Λ= 1√

6
(Xu+Xd−2Xs) , Ξ0=εabc(uaCγ5sb)sc, Ξ−=−εabc(daCγ5sb)sc,

where Xu = εabc(daCγ5sb)uc, Xd = εabc(saCγ5ub)dc, Xs = εabc(uaCγ5db)sc.
(2.2)

For simplicity, we have suppressed the explicit spinor indices and spatial coordinates in Eq. (2.2)
and the renormalization factors in Eq. (2.1). Based on a set of the NBS wave functions, we define
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a non-local potential
(

∇2

2µλ
+

k2
λ

2µλ

)

δλλ ′φλ ′E(~r) =
∫

d3r ′Uλλ ′(~r,~r ′)φλ ′E(~r ′) with the reduced mass

µλ = mB1mB2/(mB1 +mB2).
In lattice QCD calculations, we compute the four-point correlation function defined by[13]

F〈B1B2B3B4〉
αβ ,JM (~r, t − t0) = ∑

~X

〈

0

∣

∣

∣

∣

B1,α(~X +~r, t)B2,β (~X, t)J (J,M)
B3B4

(t0)

∣

∣

∣

∣

0

〉

, (2.3)

whereJ
(J,M)
B3B4

(t0) = ∑α ′β ′ P(J,M)
α ′β ′ B3,α ′(t0)B4,β ′(t0) is a source operator that createsB3B4 states with

the total angular momentumJ,M. The normalised four-point function can be expressed as

R〈B1B2B3B4〉
αβ ,JM (~r, t − t0) = e(mB1+mB2)(t−t0)F〈B1B2B3B4〉

αβ ,JM (~r, t − t0)

=∑
n

An∑
~X

〈

0
∣

∣

∣
B1,α(~X +~r,0)B2,β (~X,0)

∣

∣

∣
En

〉

e−(En−mB1−mB2)(t−t0)+O(e−(Eth−mB1−mB2)(t−t0)),(2.4)

whereEn (|En〉) is the eigen-energy (eigen-state) of the six-quark system andAn = ∑α ′β ′ P(JM)
α ′β ′

〈En|B4,β ′B3,α ′ |0〉. Hereafter, the spin and angular momentum subscripts are suppressed for F and
R for simplicity. At moderately larget − t0 where the inelastic contribution above the pion pro-
duction O(e−(Eth−mB1−mB2)(t−t0)) = O(e−mπ (t−t0)) becomes negligible, we can construct the non-

local potentialU through
(

∇2

2µλ
+

k2
λ

2µλ

)

δλλ ′Fλ ′(~r) =
∫

d3r ′Uλλ ′(~r,~r ′)Fλ ′(~r ′). In lattice QCD cal-

culations in a finite box, it is practical to use the velocity (derivative) expansion, Uλλ ′(~r,~r ′) =

Vλλ ′(~r,~∇r)δ 3(~r −~r ′). In the lowest few orders we have

V(~r,~∇r) = V(0)(r)+V(σ)(r)~σ1 ·~σ2 +V(T)(r)S12+V( LS
ALS)(r)~L · (~σ1±~σ2)+O(∇2), (2.5)

wherer = |~r|, ~σi are the Pauli matrices acting on the spin space of thei-th baryon,S12 = 3(~r ·
~σ1)(~r ·~σ2)/r2−~σ1 ·~σ2 is the tensor operator, and~L =~r × (−i~∇) is the angular momentum oper-
ator. The first three-terms constitute the leading order (LO) potential while the fourth term cor-
responds to the next-to-leading order (NLO) potential. By taking the non-relativistic approxima-

tion, En −mB1 −mB2 ≃
k2

λ ,n

2µλ
+ O(k4

λ ,n), and neglecting theVNLO and the higher order terms, we

obtain
(

∇2

2µλ
− ∂

∂ t

)

Rλε(~r, t) ≃ V(LO)
λλ ′ (~r)θλλ ′Rλ ′ε(~r, t), with θλλ ′ = e

(mB1+mB2−mB′1
−mB′2

)(t−t0). Note

that we have introduced the matrix formRλ ′ε = {Rλ ′ε0
,Rλ ′ε1

} with linearly independent NBS
wave functionsRλ ′ε0

and Rλ ′ε1
. For the spin singlet state, we extract the central potential as

V(Central)
λλ ′ (r;J = 0) = (θλλ ′)−1(R−1)ε ′λ ′( ∇2

2µλ
− ∂

∂ t )Rλε ′ . For the spin triplet state, the wave func-
tion is decomposed into theS- andD-wave components as

{

R(~r; 3S1) = PR(~r;J = 1) ≡ 1
24 ∑R∈ORR(~r;J = 1),

R(~r; 3D1) = QR(~r;J = 1) ≡ (1−P)R(~r;J = 1).
(2.6)

Therefore, the Schrödinger equation with the LO potentials for the spin triplet state becomes

{

P

Q

}

×
{

V(0)
λλ ′(r)+V(σ)

λλ ′ (r)+V(T)
λλ ′ (r)S12

}

θλλ ′Rλ ′ε(~r, t − t0)=

{

P

Q

}

×
{

∇2

2µλ
− ∂

∂ t

}

Rλε(~r, t − t0),

(2.7)
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Figure 1: The effective mass of single baryon’s correlation functions with utilising wall sources.

from which the central and tensor potentials,V(Central)
λλ ′ (r;J = 0)= (V(0)(r)−3V(σ)(r))λλ ′ for J = 0,

V(Central)
λλ ′ (r;J = 1) = (V(0)(r)+V(σ)(r))λλ ′ , andV(Tensor)

λλ ′ (r) for J = 1, can be determined1.

3. Comprehensive lattice QCD calculation with almost physical quark masses

Nf = 2+ 1 gauge configurations at almost the physical quark masses are used; they are gen-
erated on 964 lattice by employing the RG improved (Iwasaki) gauge action atβ = 1.82 with the
nonperturbativelyO(a) improved Wilson quark (clover) action at(κud,κs) = (0.126117,0.124790)
with csw = 1.11 and the 6-APE stout smeared links with the smearing parameterρ = 0.1. Prelimi-
nary studies show that the physical volume is(aL)4 ≈(8.1fm)4 with the lattice spacinga≈ 0.085fm
and(mπ ,mK) ≈ (146,525)MeV. See Ref.[14] for details on the generation of the gauge configu-
ration. The periodic (Dirichlet) boundary condition is used for spacial (temporal) directions; wall
quark source is employed with Coulomb gauge fixing which is separated fromthe Dirichlet bound-
ary by |tDBC− t0| = 48. Forward and backward propagation in time are combined by using the
charge conjugation and time reversal symmetries to double the statistics. Each gauge configuration
is used four times by using the hypercubic SO(4,Z) symmetry of 964 lattice. A large number of
baryon-baryon potentials including the channels fromNN to ΞΞ are studied by means of HAL
QCD method[9]. See also Ref.[12] for the thoroughgoing consistency check in the numerical out-
puts and comparison at various occasions between the UCA[15] and the present algorithm[11]. In
this report, 52 wall sources which is about a half (52/96) of possible statistics are used for the 207
gauge configurations at every 10 trajectories. Statistical data are averaged with the bin size 23.
Jackknife method is used to estimate the statistical errors.

4. Results

4.1 Effective masses from single baryons’ correlation function

As mentioned above, the potential is obtained at moderately large time slices where the inelas-
tic contribution above the pion production is suppressed. In addition, the single baryon’s correla-

1The potential is obtained from the NBS wave function at moderately large imaginary time; it would bet − t0 ≫
1/mπ ∼ 1.4 fm. In addition, no single state saturation between the ground state and the excited states with respect to the

relative motion, e.g.,t − t0 ≫ (∆E)−1 =
(

(2π)2/(2µ(La)2)
)−1 ≃ 8.0 fm, is required for the HAL QCD method[13].
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Figure 2: Left: ΛN central potential in the1S0 channel calculated with nearly physical point lattice QCD cal-
culation on a volume(96a)4 ≈(8.1fm)4 with the lattice spacinga≈ 0.085fm and(mπ ,mK)≈ (146,525)MeV.
Centre:ΛN−ΣN central potential in the1S0 channel. Right:ΣN central potential in the1S0 channel.

tion functions,(CB1(t − t0)CB2(t − t0))−1, are used to obtain the normalised four-point correlation
function instead of the simple exponential functional form e(mB1+mB2)(t−t0) in the actual numerical
analysis. The statistical correlation between the numerator and the denominator in the normalised
four-point correlation function maybe beneficial to reduce the statistical noise.

Fig. 1 shows the effective masses of the single baryon’s correlation function. The plateau starts
from the time slice aroundt − t0 ≈ 14, which suggests that the potentials should be obtained at the
time slicest − t0 ≥ 14. However, statistics is still limited. In this report we present preliminary
results at earlier time slices (t − t0 = 5−12) of our on-going work.

4.2 Central potentials of ΛN−ΣN in 1S0 channel

Fig. 2 shows theΛN diagonal (left),ΛN → ΣN coupled-channel (centre), andΣN (I = 1/2)
diagonal (right) potentials in the1S0 channel. In the flavorSU(3) limit, these channels are expressed
in terms of 888s and 222777 representations,|ΛN〉 = 1√

10
(|888s〉+ 3|222777〉), and|ΣN〉 = 1√

10
(3|888s〉− |222777〉).

Therefore theΛN diagonal potential is expected to be more or less similar to theNN potential in
the 1S0 channel. On the other hand, theΣN (I = 1/2,1S0) potential shows strong repulsive force
which is consistent with the quark model’s prediction.

4.3 Central potentials of ΛN−ΣN in 3S1−3 D1 channel

Fig. 3 shows theΛN diagonal (left),ΛN → ΣN coupled-channel (centre), andΣN (I = 1/2)

Figure 3: Left: ΛN central potential in the3S1 −3 D1 channel calculated with nearly physical point lat-
tice QCD calculation on a volume(96a)4 ≈(8.1fm)4 with the lattice spacinga≈ 0.085fm and(mπ ,mK) ≈
(146,525)MeV. Centre:ΛN−ΣN central potential in the3S1-3D1 channel. Right:ΣN central potential in
the3S1-3D1 channel.
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Figure 4: Left: ΛN tensor potential in the3S1 −3 D1 channel calculated with nearly physical point lat-
tice QCD calculation on a volume(96a)4 ≈(8.1fm)4 with the lattice spacinga≈ 0.085fm and(mπ ,mK) ≈
(146,525)MeV. Centre:ΛN−ΣN tensor potential. Right:ΣN tensor potential.

diagonal (right) potentials in the3S1−3 D1 channels. Relatively better signals are obtained in these
states than in the1S0 because of the three-times larger statistics in the spin triplet channel. In the
both diagonal channels, repulsive core is found and weakly attractivedent seems to exist in the
middle distance region. The off-diagonal (coupled channel) potential is seen at the short distance.

4.4 Tensor potentials of ΛN−ΣN in 3S1−3 D1 channel

Fig. 4 shows the tensor potentials in theΛN (left), ΛN→ ΣN (centre), andΣN (I = 1/2) (right)
potentials in the3S1 −3 D1 channel. Weak tensor potentials are seen in both diagonal channels.
Regarding the study of light hypernuclear structure [1] theΛN−ΣN tensor potential is expected to
play an important role to bind one or twoΛ(’s) and a light nucleus. The present result shows that
the tensor potential has more or less sizable strength and it is weaker than theNN tensor force.

4.5 Two central (1S0, 3S1−3 D1) and a tensor (3S1−3 D1) potentials of ΣN (I = 3/2) system

Fig. 5 shows the two central potentials in the1S0 (left) and3S1−3 D1 (centre), and the tensor
potential in the3S1−3 D1 (right) channels ofΣN (I = 3/2) system, respectively. The1S0 ΣN(I =

3/2) channel is represented by pure 222777 potential in the flavorSU(3) limit which is same as the1S0

NN potential. The potential shows more or less similar to theNN (1S0). On the other hand, the
3S1−3 D1 state is represented by pure 111000 irreducible representation. The present results seems to
suggest that the central potential in the3S1−3 D1 is repulsive, which is consistent with the quark
model’s prediction. The tensor force is also obtained. The lattice QCD would be a promising
approach to unveil the origin of repulsive nature ofΣN interaction.

Figure 5: TheΣN potentials of1S0 central (left),3S1−3 D1 central (centre), and3S1−3 D1 tensor (right) in
theI = 3/2 channel.
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5. Summary

In this report, the preliminary snapshots of theΛN, ΣN and their coupled-channel potentials
are presented. Both diagonal central potentials show the repulsive core in the short distance; the
strengths are different from channel by channel. The1S0 ΣN (I = 1/2) and3S1−3 D1 ΣN (I = 3/2)
show relatively stronger repulsive cores; it is interesting to see that the quark model predicts similar
behaviour. In order to obtain more clear signals for both channels, several efforts should be devoted
to improve the following points: (i) to increase statistics to go to larger time slices, (ii)to perform
the analysis with taking into account the renormalization factors for the coupled channel potentials,
(iii) to examine relativistic effects (i.e., higher differentials in time) for obtaining the potentials.

Acknowledgments

The lattice QCD calculations have been performed on the K computer at RIKEN,AICS (
hp120281, hp130023, hp140209, hp150223, hp150262, hp160211), HOKUSAI FX100 computer
at RIKEN, Wako ( G15023, G16030) and HA-PACS at University of Tsukuba ( 14a-25, 15a-33,
14a-20, 15a-30). We thank ILDG/JLDG [16] which serves as an essential infrastructure in this
study. This work is supported in part by MEXT Grant-in-Aid for Scientific Research (16K05340,
25105505, 15K17667, 25287046, 26400281, JP15K17667), andSPIRE (Strategic Program for
Innovative Research) Field 5 project and “Priority issue on Post-K computer” (Elucidation of the
Fundamental Laws and Evolution of the Universe). We thank all collaborators in this project.

References

[1] H. Nemura, Y. Akaishi and Y. Suzuki, Phys. Rev. Lett.89 (2002) 142504 [arXiv:nucl-th/0203013].

[2] P. B. Demorest,et al., Nature467, 1081 (2010).

[3] J. Antoniadiset al., Science340, 6131 (2013) [arXiv:1304.6875 [astro-ph.HE]].

[4] N. Ishii, S. Aoki, T. Hatsuda, Phys. Rev. Lett.99 (2007) 022001.

[5] S. Aoki, T. Hatsuda and N. Ishii, Prog. Theor. Phys.123 (2010) 89.

[6] S. Aoki et al. [HAL QCD Collaboration], PTEP2012 (2012) 01A105.

[7] K. Sasakiet al. [HAL QCD Collaboration], PTEP2015, no. 11 (2015) 113B01.

[8] Y. Ikedaet al. [HAL QCD Collaboration], Phys. Rev. Lett.117, no. 24, 242001 (2016).

[9] T. Doi et al., in these proceedings; N. Ishiiet al., in these proceedings; K. Sasakiet al., in these
proceedings;

[10] H. Nemura [HAL QCD Collaboration], PoS LATTICE2011, 167 (2011) [arXiv:1203.3320 [hep-lat]].

[11] H. Nemura [HAL QCD Collaboration], PoS LATTICE2013, 426 (2014).

[12] H. Nemura, Comput. Phys. Commun.207, 91 (2016) [arXiv:1510.00903 [hep-lat]].

[13] N. Ishii et al. [HAL QCD Collaboration], Phys. Lett. B712, 437 (2012) [arXiv:1203.3642 [hep-lat]].

[14] K.-I. Ishikawaet al., PoS LATTICE2015 (2015) 075 [arXiv:1511.09222 [hep-lat]].

[15] T. Doi and M. G. Endres, Comput. Phys. Commun.184 (2013) 117.

[16] Seehttp://www.lqcd.org/ildg andhttp://www.jldg.org

6


