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In previous works we predicted the existence of a b̄b̄ud tetraquark with quantum numbers I(JP) =

0(1+) using the static approximation for the b̄ quarks and neglecting heavy spin effects. Since
the binding energy is of the same order as expected for these heavy spin effects, it is essential to
include them in the computation. Here we present a corresponding method and show evidence
that binding is only slightly weakened and that the b̄b̄ud tetraquark persists.
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1. Motivation

Possibly existing heavy-heavy-light-light tetraquarks are currently a “hot topic” both experi-
mentally and theoretically, in particular since the observation of the electrically charged Zb states
by the BELLE collaboration in 2011 [1].

In previous papers we predicted the existence of a b̄b̄ud tetraquark with quantum numbers
I(JP) = 0(1+) (I: isospin; J: total angular momentum; P: parity) using the static approximation
for the b̄ quarks and neglecting heavy spin effects [2, 3, 4]. Since the obtained binding energy ∆E =

90+43
−36 MeV is of the same order as expected for heavy spin effects (O(mB∗ −mB) = O(46MeV)),

it is essential to include heavy spin effects in the computation. In section 2 we summarize our
previous work and in section 3 we propose a method to take heavy spin effects into account. We
also show strong evidence that the b̄b̄ud tetraquark persists with only a slightly reduced binding
energy ∆E = 59+30

−38 MeV. Parts of this work have been published in [5].
Related papers studying also b̄b̄ud 4-quark systems are [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]

(static b̄ quarks) and [18, 19] (NRQCD treatment of b̄ quarks).

2. b̄b̄ud tetraquarks, heavy spin effects neglected

The basic idea of our approach is to investigate the existence of heavy tetraquarks with quark
content b̄b̄ud in two steps (cf. also Figure 1):

(1) Compute potentials of two static antiquarks b̄b̄ in the presence of two light quarks ud using
lattice QCD.

(2) Check, whether these potentials are sufficiently attractive to host a bound state by solving a
corresponding Schrödinger equation. A bound state would indicate a stable b̄b̄ud tetraquark.

This so-called Born-Oppenheimer approximation [20] is appropriate, if mu,d�mb, which is clearly
the case for physical quark masses.

positions
fixed

→Vb̄b̄,L(r)

step 1

r

→ existence of a tetraquark ... or not

step 2

Vb̄b̄,L(r)

Figure 1: the Born-Oppenheimer approximation for b̄b̄ud 4-quark systems.

1



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
1
0
3

Including heavy spin effects in a lattice QCD study of static-static-light-light tetraquarks Pedro Bicudo

2.1 Born-Oppenheimer approximation, step (1)

Step (1), the lattice QCD computation of b̄b̄ potentials Vb̄b̄,L(r), is explained in detail in [4]. It
is based on several gauge link ensembles generated by the European Twisted Mass Collaboration
(ETMC) with 2 dynamical quark flavors (cf. e.g. [21, 22]) with light u/d quark mass extrapolations
to the physical value.

We use b̄b̄ud creation operators

OL,S(~r1,~r2) = (C L)AB(C S)CD

(
Q̄C(~r1)q

(1)
A (~r1)

)(
Q̄D(~r2)q

(2)
B (~r2)

)
, r = |~r1−~r2|,

(2.1)

where Q̄ denotes a static antiquark representing a b̄ quark. There are quite a number of different
channels characterized by

• isospin, q(1)q(2) ∈ {(ud−du)/
√

2 , uu,(ud +du)/
√

2,dd},

• light quark spin and parity, L (a 4×4 matrix acting in spin space),

• static quark spin and parity (a 4× 4 matrix acting in spin space; irrelevant for Vb̄b̄,L(r), be-
cause static spins are not part of the QCD Hamiltonian).

Some of these channels are attractive, others are repulsive, some correspond for large b̄b̄ separations
to pairs of ground state mesons, others correspond to excited mesons (cf. Figure 4 and Figure 5 in
[4]). As usual in lattice QCD hadron spectroscopy, we compute temporal correlation functions of
these creation operators and determine Vb̄b̄,L(r) for each channel from the exponential decay of its
correlation function.

There are two attractive channels corresponding to pairs of ground state mesons, i.e. B and/or
B∗ (B and B∗ are degenerate in the static limit):

• I = 0, j = 0 (light spin coupling L = (1+ γ0)γ5), more attractive;

• I = 1, j = 1 (light spin coupling L = (1+ γ0)γ j), less attractive

( j denotes the light quark spin). The lattice QCD results can be parameterized by continuous
functions using the phenomenologically motivated fitting ansatz

Vb̄b̄,L(r) = −α

r
exp
(
−
(

r
d

)p)
(2.2)

with fitting parameters α , d and p (one-gluon-exchange at short separations, exponential screening
at large separations; cf. section II.B. in [2] for a detailed discussion).

2.2 Born-Oppenheimer approximation, step (2)

In step (2) we solve the Schrödinger equation for the relative coordinate~r of the two b̄ quarks,(
− 1

2µ
4+Vb̄b̄,L(r)

)
ψ(~r) = Eψ(~r) , µ = mb/2, (2.3)
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where Vb̄b̄,L(r) is one of the two potentials (2.2) obtained in step (1) and mb = 4977MeV (from the
quark model [23]). Each possibly existing bound state, i.e. each eigenvalue E < 0, would indicate
a stable b̄b̄ud tetraquark.

We find only one bound state for one specific potential Vb̄b̄,L(r), the more attractive potential
corresponding to I = 0, jz = 0. The binding energy is ∆E =−E = 90+43

−36 MeV, i.e. the confidence
level for the existence of the b̄b̄ud tetraquark is around 2σ . Its quantum numbers are I(JP) = 0(1+)
as outlined in the following:

• b̄b̄ is flavor symmetric, it must be in a color triplet, i.e. antisymmetric (otherwise one gluon
exchange would not lead to attraction)
→ due to the Pauli principle the heavy spin must be symmetric, i.e. jb = 1.

• ud with I = 0 is flavor antisymmetric, it must be in a color triplet, i.e. antisymmetric (other-
wise the 4-quark system would not be in a color singlet)
→ due to Pauli principle the light spin must be antisymmetric, i.e. j = 0.

• jb = 1, j = 0 and angular momentum l = 0 (the bound state corresponds to an s wave) lead
to total angular momentum J = 1.

• Ground state mesons B and B∗ both have P = −, the s wave has P = +. Therefore, the
4-quark system has P =+.

3. b̄b̄ud tetraquarks, heavy spin effects taken into account

To take heavy spin effects into account, we first interpret static-static-light-light creation op-
erators and the corresponding potentials VL(r), r = |~r1−~r2| in terms of two heavy-light mesons
using

OL,S(~r1,~r2) = (C L)AB(C S)CD

(
Q̄C(~r1)q

(1)
A (~r1)

)(
Q̄D(~r2)q

(2)
B (~r2)

)
=

= G(S,L)ab

(
Q̄(~r1)Γ

aq(1)(~r1)
)(

Q̄(~r2)Γ
bq(2)(~r2)

)
, (3.1)

where G(S,L)ab are coefficients, which can be computed using the Fierz identity. Since we use
static quarks Q̄ (with only two non-vanishing spinor components), there are 8 possibilties both for
Γa and Γb. The relation to quantum numbers and heavy-light mesons is the following:

• Γa,b = (1+ γ0)γ5 → JP = 0− (the pseudoscalar B meson).

• Γa,b = (1+ γ0)γ j ( j = 1,2,3) → JP = 1− (the vector B∗ meson).

• Γa,b = (1+ γ0)1 → JP = 0+ (the scalar B∗0 meson).

• Γa,b = (1+ γ0)γ jγ5 ( j = 1,2,3) → JP = 1+ (the pseudovector B∗1 meson).

In this work we focus on B and B∗ mesons (the two lightest heavy-light mesons), which are
degenerate in the static limit and have similar mass in nature (mB∗−mB ≈ 45MeV). One can show
that there are 16 possibilities of light and static spin couplings,

L , S ∈ {(1+ γ0)γ5 , (1+ γ0)γ j}, (3.2)

which generate exclusively B and/or B∗ mesons. The corresponding potentials depend only on L,
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• V5(r)≡Vb̄b̄,(1+γ0)γ5
(r), i.e. L = (1+ γ0)γ5,

is attractive for isospin I = 0, repulsive for isospin I = 1,

• Vj(r)≡Vb̄b̄,(1+γ0)γ j
(r), i.e. L = (1+ γ0)γ j,

is repulsive for isospin I = 0, attractive for isospin I = 1.

Neither for V5(r) nor for Vj(r) it is possible to choose S such that it corresponds exclusively to a B
meson pair. One always finds linear combinations of B and B∗ mesons, e.g. for L = S = (1+ γ0)γ5

B(~r1)B(~r2)+B∗x(~r1)B∗x(~r2)+B∗y(~r1)B∗y(~r2)+B∗z (~r1)B∗z (~r2) (3.3)

(the indices x,y,z denote the spin orientation of the B∗ meson). Vice versa, a B(~r1)B(~r2) pair does
not have defined light quark spin and hence corresponds to a mixture of both V5(r) or Vj(r), i.e. a
mixture of an attractive and a repulsive potential.

To study this interplay between the mass difference of B and B∗ on the one hand and the
attractive and repulsive potentials V5(r) and Vj(r) on the other hand, we consider a coupled channel
Schrödinger equation for the two b̄ quarks,

HΨ(~r1,~r2) =
(

H0 +Hint

)
Ψ(~r1,~r2) = EΨ(~r1,~r2) (3.4)

with a 16-component wave function Ψ≡ (B(~r1)B(~r2) , B(~r1)B∗x(~r2) , . . . , B∗z (~r1)B∗z (~r2)). The free
part of the Hamiltonian is

H0 =
~p2

1
2mb

116×16 +
~p2

2
2mb

116×16 +M⊗14×4 +14×4⊗M (3.5)

with M = diag(mB , mB∗ , mB∗ , mB∗), mb = 4977MeV (from the quark model [23]) and mB = 5280MeV,
mB∗ = 5325MeV from the PDG [24]. The interacting part of the Hamiltonian is

Hint = T−1V (r)T , V (r) = diag
(

V5(r), . . . ,V5(r)︸ ︷︷ ︸
4×

,Vj(r), . . . ,Vj(r)︸ ︷︷ ︸
12×

)
, (3.6)

where T is the transformation between the 16 components of Ψ and the 16 static-static-light-light
channels defined by S and L (T is equivalent to the coefficients G(S,L)ab in eq. (3.1)).

Due to rotational symmetry the coupled channel Schrödinger equation (3.4) can be trans-
formed to block diagonal structure, i.e. the 16×16 problem separates into

• a 2×2 problem (corresponding to J = 0),

• a 2×2 and a 1×1 problem (corresponding to J = 1; 3× degenerate),

• a 1×1 problem (corresponding to J = 2; 5× degenerate).

Since heavy spin effects will weaken the binding of the b̄b̄ud system, it is sufficient to study I(JP)=

0(1+), the only channel, for which a b̄b̄ud tetraquark has been predicted without taking heavy
spin effects into account (cf. section 2). Since the corresponding 1× 1 problem contains only the

4
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repulsive potential Vj(r), it will not have a bound state and can be excluded. The 2× 2 problem,
however, contains both the attractive potential V5(r) and the repulsive potential Vj(r),

Hint,J=1,2×2 =
1
2

(
V5(r)+Vj(r) Vj(r)−V5(r)
Vj(r)−V5(r) V5(r)+Vj(r)

)
, (3.7)

where the first component of the corresponding wave function Ψ corresponds to BB∗ and the second
component to B∗B∗.

This 2×2 coupled channel Schrödinger equation can be solved numerically using a standard
Runge-Kutta shooting method. We find that the b̄b̄ud tetraquark predicted in section 2 persists
with a slightly reduced binding energy ∆E = mB +m∗B−E = 59+30

−38 MeV (without taking heavy
spin effects into account ∆E = 90+43

−36 MeV). Consequently the mass of the b̄b̄ud tetraquark is
m = mB +m∗B−∆E = (5280+ 5325− 59+38

−30)MeV = 10546+38
−30 MeV. Regarding the structure of

the b̄b̄ud tetraquark we obtain the following results:

• The wave function Ψ is a roughly 50%/50% mixture of BB∗ and B∗B∗, i.e. the additional en-
ergy from the larger mass of the second B∗ meson is more than compensated by the attractive
potential V5(r) (cf. Figure 2 (left)).

• The average separation of the two b̄ quarks is around 0.25fm (cf. Figure 2 (right)).
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Figure 2: (left) wave function components of Ψ; (right) probability density for the separation of the two b̄
quarks.

Acknowledgments

P.B. thanks IFT for hospitality and CFTP, grant FCT UID/FIS/00777/2013, for support. M.W.
acknowledges support by the Emmy Noether Programme of the DFG (German Research Founda-
tion), grant WA 3000/1-1.

This work was supported in part by the Helmholtz International Center for FAIR within the
framework of the LOEWE program launched by the State of Hesse.

5



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
1
0
3

Including heavy spin effects in a lattice QCD study of static-static-light-light tetraquarks Pedro Bicudo

Calculations on the LOEWE-CSC high-performance computer of Johann Wolfgang Goethe-
University Frankfurt am Main were conducted for this research. We would like to thank HPC-
Hessen, funded by the State Ministry of Higher Education, Research and the Arts, for programming
advice.

References

[1] A. Bondar et al. [Belle Collaboration], Phys. Rev. Lett. 108, 122001 (2012) [arXiv:1110.2251
[hep-ex]].

[2] P. Bicudo and M. Wagner, Phys. Rev. D 87, 114511 (2013) [arXiv:1209.6274 [hep-ph]].

[3] P. Bicudo et al., Phys. Rev. D 92, 014507 (2015) [arXiv:1505.00613 [hep-lat]].

[4] P. Bicudo, K. Cichy, A. Peters and M. Wagner, Phys. Rev. D 93, 034501 (2016) [arXiv:1510.03441
[hep-lat]].

[5] J. Scheunert, P. Bicudo, A. Uenver and M. Wagner, Acta Phys. Polon. Supp. 8, no. 2, 363 (2015)
[arXiv:1505.03496 [hep-ph]].

[6] C. Stewart and R. Koniuk, Phys. Rev. D 57, 5581 (1998) [arXiv:hep-lat/9803003].

[7] C. Michael and P. Pennanen [UKQCD Collaboration], Phys. Rev. D 60, 054012 (1999)
[arXiv:hep-lat/9901007].

[8] M. S. Cook and H. R. Fiebig, arXiv:hep-lat/0210054.

[9] T. Doi, T. T. Takahashi and H. Suganuma, AIP Conf. Proc. 842, 246 (2006) [arXiv:hep-lat/0601008].

[10] W. Detmold, K. Orginos and M. J. Savage, Phys. Rev. D 76, 114503 (2007) [arXiv:hep-lat/0703009].

[11] M. Wagner [ETM Collaboration], PoS LATTICE 2010, 162 (2010) [arXiv:1008.1538 [hep-lat]].

[12] G. Bali and M. Hetzenegger, PoS LATTICE2010, 142 (2010) [arXiv:1011.0571 [hep-lat]].

[13] M. Wagner [ETM Collaboration], Acta Phys. Polon. Supp. 4, 747 (2011) [arXiv:1103.5147 [hep-lat]].

[14] Z. S. Brown and K. Orginos, Phys. Rev. D 86, 114506 (2012) [arXiv:1210.1953 [hep-lat]].

[15] B. Wagenbach, P. Bicudo and M. Wagner, J. Phys. Conf. Ser. 599, 012006 (2015) [arXiv:1411.2453
[hep-lat]].

[16] A. Peters et al., PoS LATTICE 2015, 095 (2016) [arXiv:1508.00343 [hep-lat]].

[17] A. Peters, P. Bicudo, K. Cichy and M. Wagner, arXiv:1602.07621 [hep-lat].

[18] A. Francis, R. J. Hudspith, R. Lewis and K. Maltman, arXiv:1607.05214 [hep-lat].

[19] A. Peters et al., arXiv:1609.00181 [hep-lat].

[20] M. Born and R. Oppenheimer, Annalen der Physik 389, 457 (1927).

[21] P. Boucaud et al. [ETM Collaboration], Comput. Phys. Commun. 179, 695 (2008) [arXiv:0803.0224
[hep-lat]].

[22] R. Baron et al. [ETM Collaboration], JHEP 1008, 097 (2010) [arXiv:0911.5061 [hep-lat]].

[23] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).

[24] K. A. Olive et al. [Particle Data Group], Chin. Phys. C, 38, 090001 (2014) and 2015 update.

6


