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1. Introduction

Present-day lattice simulations are typically carried out employing highly optimized algo-
rithms and utilizing large amounts of computing power. With increased statistical precision it has
become compulsory to control all systematics including effects due to the finite simulation volume,
unphysical values of the quark masses and the lattice cut-off a > 0. The results presented here have
all been obtained on volumes with a linear spatial extent L & max{4m−1

PS ,2 fm}, where mPS denotes
the mass of the lightest pseudoscalar meson. Moreover, as will be described in more detail below,
two different trajectories were used to safely extrapolate to the physical point in the quark mass
plane.

Taking the continuum limit is at least equally important. To this end we utilize O(a) im-
provement, however, the finest two of our five lattice spacings are in the regime where topological
freezing [7 – 9] becomes a serious problem. This sets in, dependent on the details of the simulation,
between a−1 = 3GeV and 4GeV [10] while our finest lattice corresponds to a−1 ≈ 5GeV. Large
autocorrelation times for quantities which couple to topological modes and non-ergodicity of the
simulation can be avoided by employing open boundary conditions (OBC) [11], that allow objects
carrying topological charge to flow into and out of the simulation volume. Here, we employ OBC
in time and periodic boundary conditions (PBC) in space. We remark that the computational over-
head, due to the use of OBC is quite moderate [2] and even more so if one considers the slowing
down of simulations with conventional boundary conditions with at least a large power of a−1 if
not exponentially.

The CLS group (Coordinated Lattice Simulations) [12] has started a major effort to generate
N f = 2+ 1 gauge ensembles employing non-perturbatively improved Wilson fermions with OBC
aiming at removing all the above mentioned systematics and in particular enabling controlled con-
tinuum limit extrapolations, utilizing at least five lattice spacings. Some of the available ensembles
are detailed in Refs. [12, 13].

Here we present preliminary results on the octet and decuplet baryon spectra (in Sec. 7), dis-
cuss scale setting (in Sec. 8) and attempt a first continuum limit extrapolation at the mu = md =

ms point of the ratio of the octet over the decuplet baryon mass as well as of the axial charge
(Sec. 9). Prior to this, we present some details about the simulation strategy and the fitting proce-
dure (Sec. 2 – 6).

2. Overview of the simulation strategy

We use the non-perturbatively O(a)-improved Wilson fermion action with tree-level Symanzik
improved gauge action and 2+ 1 flavours of degenerate light quarks of mass m` = mu = md and
a strange quark of mass ms. Our simulation strategy in terms of the quark masses is outlined in
Fig. 1. In general, we realize three chiral trajectories for each value of the inverse gauge coupling
β = 6/g2:

(1) Fixed average quark mass, m = msymm:
We keep the sum of bare quark masses constant: 3m = 2m` +ms = const. This is equivalent to
2/κ`+1/κs = const., which means that the sum of renormalized quark masses 2m̂`+m̂s = const.+
O(a).
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Figure 1: General simulation strategy in the quark mass plane (strange quark vs. light quark mass). The
red line represents the flavour symmetric trajectory, the blue and green lines show the trajectories along a
constant average quark mass and a constant strange quark mass, respectively.

(2) Fixed strange quark mass, m̃s = m̃s,ph, see Ref. [13]:
The strange axial ward identity (AWI) mass m̃s is kept fixed resulting in a renormalized strange
quark mass m̂s = m̂s,ph, up to tiny O(a) effects.

(3) Symmetric line, ms = m`:
For the joint non-perturbative renormalization programme of the Mainz group and RQCD (as well
as to fix the m̃s = m̃s,ph trajectory), additional simulations along the flavour-symmetric line are
performed.

At present not all of these lines are available for all of our lattice spacings. Following the
strategy introduced by the QCDSF collaboration [14], at each β -value we first determine the ms =

m` point at which the combination m2
K +m2

π/2 assumes its physical value. Starting from this point,
the m = msymm chiral trajectory is controlled by just one parameter and we benefit from the fact
that flavour averaged quantities vary only moderately.

Since the scale t0/a2 [15] remains almost constant along this line, see Fig. 9 below, in practice
we use the dimensionless combination φ4 = 8t0(m2

K +m2
π/2) to fix the m` = ms = m starting point

and ∑i 1/κi. Using the values mπ = 134.8(3) MeV and mK = 494.2(4) MeV of Ref. [16], and√
8t0 = 0.4144(59)(37) fm of Ref. [17], one obtains φ

phys
4 |mud=ms = 1.117(38). Our original target

value φ4|m`=ms = 1.15 was chosen somewhat larger to account for the small slope of the chiral
extrapolation found in preparatory studies at coarse lattice spacings.

The ensembles along the flavour-symmetric trajectory (m` = ms) are used for our non-pertur-
bative renormalization programme, where we work in a massless scheme and therefore have to
extrapolate to ms = m` = 0. In addition, we use this trajectory for fixing the m̃s = m̃s,ph simulation
parameters, which is non-trivial in the Wilson formulation, due to additive mass renormalization
and resulting differences between defining singlet and non-singlet quark mass combinations.

In the following we sketch how the κ-values along the m̃s = m̃s,ph line are determined: we
first parameterize light and strange AWI masses as functions of the bare quark masses (including
O(a)-improvement terms), combining data from both trajectories, m = msymm and ms = m`. In a
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Figure 2: CLS ensemble overview, see Refs. [12, 13]. Ensembles with m = msymm (left) and m̃s = m̃s,ph

(right). Different letters refer to different volumes/aspect ratios.

second step we determine the “physical” point along the m = msymm line as the point where the
ratio m̃s/m̃` takes its physical value m̃s/m̃` = 27.46(44) [16]. In this way we obtain m̃s,ph and,
finally, with our parametrization at hand, we can predict the (κ`,κs) pairs for which m̃s = m̃s,ph.
More detail can be found in Sec. 4.

3. Simulation Details

The gauge field configurations are generated using the OPENQCD package [2]. This contains
several algorithmic improvements, e.g., the Hasenbusch trick, higher order integrators, a multi-level
integration scheme, a deflated solver [18, 6] and twisted mass reweighting: in the light fermion
part of the action a twisted mass term is introduced in order to push eigenvalues of the Dirac
operator away from zero and, hence, increase the stability of the HMC simulation. This is then
corrected for by reweighting the observables accordingly. Also with respect to the strange quark
action reweighting is applied to correct for the inaccuracy of the rational approximation used in
the N f = 1 part of the HMC simulation. The reweighting works quite efficiently in practice, more
details can be found in Ref. [12].

So far CLS has generated ensembles at five different values of the inverse gauge coupling:
β = 6/g2 = 3.4,3.46,3.55,3.7 and 3.85. These couplings correspond to lattice spacings a of
roughly 0.085 fm,0.077 fm,0.064 fm,0.05 fm and 0.04 fm, respectively, covering a range of almost
a factor five in terms of a2.

Note that the aspect ratios of the generated lattices are usually larger than two, so that regions
that are close to the classically open boundaries in the time direction can be discarded, as these are
polluted by artefacts related to cut-off effects as well as massive scalar states propagating into the
simulation volume. All ensembles with OBC have a spatial lattice extent L & 4m−1

PS . Each HMC
trajectory has length τ = 2 and for the ensembles under consideration at least 4000 Molecular
Dynamic Units (MDUs) have been generated and often many more. Along the symmetric line we
make use of additional ensembles with anti-periodic boundary conditions in time. These usually
have less statistics and some of these have τ = 1 and were generated using BQCD software [3]
on the SFB/TR55 QPACE installation. For more detail we refer the reader to Refs. [12, 13]. An
overview over the presently available CLS ensembles is given in Fig. 2.
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4. How to fix the m̃s = m̃s,ph trajectory

Here we outline the determination of the m̃s = m̃s,ph simulation points. For simplicity we do
not discuss O(a) improvement, however, more detail can be found in Ref. [13]. We start with some
definitions. The lattice quark masses are given by m j = (1/κ j−1/κcrit)/(2a), the (averaged) AWI
masses are defined as

m̃ j + m̃k

2
= m̃ jk =

∂4〈0|A jk
4 |π jk〉

2〈0|P jk|π jk〉 . (4.1)

The point along the symmetric line (m1 = m2 = m` = ms = m3) where m̃ jk = 0 defines κcrit. A
potentially delicate issue is the different renormalization of flavour-singlet and non-singlet quark
mass combinations. While for the non-singlet combination

Zm(ms−m`) =
Zm

2a

(
1
κs
− 1

κ`

)
= m̂s− m̂` =

ZA

ZP
2(m̃13− m̃12) (4.2)

a renormalization constant Zm is needed, for the singlet combination

Zmrmm = Zmrm
2m`+ms

3
=

Zmrm

6a

(
2
κ`

+
1
κs
− 3

κcrit

)
=

ZA

ZP
m̃ (4.3)

the renormalization constant Zm rm is introduced where rm > 1. Note that rm depends on the gauge
coupling and it turns out that in the regime where the simulations are performed rm can be rather
large when determined non-perturbatively (up to rm ≈ 2).

The goal is now to determine the physical value of the strange AWI quark mass m̃s = m̃s,ph

as a function of κ` and κs ≡ κs(κ`). This then will allow us to simulate at different pion masses,
i.e. different values of κ`, keeping m̃s = m̃s,ph constant. We start with the expression for the strange
AWI mass

3m̃s = 2(m̃s− m̃`)+3m̃ =
Z
2a

[
2
(

1
κs
− 1

κ`

)
+ rm

(
1
κs

+
2
κ`
− 3

κcrit

)]
, (4.4)

where Z = ZmZP/ZA. Setting m̃s = m̃s,ph gives

1
κs

=
2

2+ rm

(
3a
Z

m̃s,ph +(1− rm)
1
κ`

+
3rm

2
1

κcrit

)
. (4.5)

Subtracting the physical point result from both sides of the equation gives

1
κs

=
1

κs,ph
+

2(1− rm)

2+ rm

(
1
κ`
− 1

κ`,ph

)
, (4.6)

while the target κ` that corresponds to a given m̃` value can be obtained through

1
κ`

=
1

κ`,ph
+

2a(2+ rm)

3Zrm
(m̃`− m̃`,ph). (4.7)

The combination Z is extracted by fitting the AWI masses along the m = const. line as a function
of κ` and κs. Along the same trajectory we define the physical point as the point where m̃s/m̃`

assumes its physical value of 27.46(44) [16]. This gives κ`,ph and κs,ph. Finally, Zrm (and κcrit if
needed) can be obtained from m̃ as a function of 1/κ along the symmetric ms = m` line.

Note that when full O(a) improvement is carried out, four additional combinations of im-
provement coefficients appear. These can be fitted in a similar fashion without additional effort,
the formulae however become more involved, see Ref. [13].
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Figure 3: Top left: m̃s vs. m̃` along the chiral trajectory m̃s = m̃s,ph. Top right: φ4 vs. φ2 along m = msymm.
Lower plots: chiral extrapolations for β = 3.4 and β = 3.55 of φ4 vs. φ2 for different chiral trajectories.
Plots (except upper right plot) taken from Ref. [13].

5. How well does the tuning of the simulation parameters work?

Here we investigate the possibility, that one or both of the chiral trajectories, m = msymm and
m̃s = m̃s,ph, could have been, in principle, mistuned. We start with the m̃s = m̃s,ph trajectory. The
most obvious question is how well m̃s is kept constant. The quality of our tuning is visualized
in the top left plot of Fig. 3. The vertical and horizontal bands correspond to propagated errors
from the determination of the physical light and strange AWI quark masses as outlined in the
previous section. For β = 3.55 the data points match the prediction within per mille accuracy. For
β = 3.4 we find that m̃s also remains constant within tiny errors, however, there appears to be a
1% shift relative to the prediction. The origin of this can be traced back to an updated value of
the improvement coefficient cA that only became available when the simulations had already been
started. The κ values at which the simulations have been performed come from a prediction based
on the previous estimate of cA while the prediction shown in the figure (blue band) is based on the
new value of cA. In any case, such a small misalignment is not of practical relevance.

Another reason for concern is whether the m = msymm trajectory hits the physical point. If
this were not the case then also the m̃s = m̃s,ph trajectory would have to be somewhat reweighted.
In Fig. 3 (top right) we plot φ4 = 8t0(m2

K +m2
π/2) ∼ m versus φ2 = t0m2

π ∼ ml for the m = msymm

5
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Figure 4: Determination of the physical point for β = 3.4 (left) and β = 3.55 (right) using the ratio of quark
masses (upper plots). We find good agreement with the corresponding ratio of meson masses (lower plots).
Figures taken from Ref. [13].

ensembles across different lattice spacings. The yellow horizontal and (barely visible) vertical
bands correspond to the physical point values within their present uncertainties. One aim of our
simulations is to ultimately reduce these errors. There is no indication that, extrapolated to the
physical φ2 value, our simulation points are at variance with the target range. At β = 3.4, however,
we observe a significant slope which becomes negligible towards the finer lattice spacings.

At β = 3.4 and β = 3.55 we have investigated the chiral extrapolations in more detail, see
the lower plots of Fig. 3. Note that φ4 is constant to next-to-leading order chiral perturbation
theory (NLO χPT) along m = const. Corrections are of higher order in the quark mass or due to
discretization effects. The dependence on φ2 is weaker at the smaller lattice spacing (β = 3.55)
which may indicate this is a lattice artefact. Most importantly, at the physical point we are within
the target range.

We remark that the orange data points in Fig. 3 (and all other figures) correspond to the D100
ensemble [13] (see Fig. 2) that has only extremely limited statistics and therefore in this case
the errors should be regarded with caution. Hence, this ensemble was excluded from any further
analysis. Nevertheless, the data at this stage do not suggest any major surprises.

We remind the reader that the physical point was determined on the m = msymm line. This
determination is shown in the upper panels of Fig. 4 for β = 3.4 and β = 3.55, where we plot
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Figure 5: Effective mass for the nucleon (left) and pion (right) on the N300 ensemble. The temporal source
positions of the point-to-all correlators are tsrc/a = 46,81,63 (top to bottom), t/a corresponds to the distance
between source and sink in forward-direction. The lattice has the time extent T = 127a. The vertical red
bands indicate the determined fit range by the procedure described in the text.

m̃s/m̃` versus 1/κ`. The lines correspond to a global fit of AWI quark masses including O(a)
improvement. The value of κ` where m̃s/m̃` = 27.46(44) [16] then defines the physical point.
Note that the green curves are predictions, whereas the corresponding data points are the results of
subsequent simulations.

The FLAG [16] value of the ratio of quark masses that we used relies on input from lattice
simulations. As a cross-check we compare our data against the corresponding meson mass ratio
3M2

π/(2M2
K +M2

π): the lower plots of Fig. 4 demonstrate excellent agreement of the meson mass
ratio with the physical point value (red lines). Our errors mean that we will be able to improve
the precision of the ratio of quark masses relative to the value quoted in the FLAG report, once a
continuum limit extrapolation has been carried out.

6. Measurement Details

The light meson and baryon spectra are obtained from smeared-smeared point-to-all correla-
tors where the sources are placed deep within the bulk of the lattice to avoid effects from the open
boundaries in time. The spatial source positions were chosen randomly. For the computation of the
pion and kaon masses we additionally make use of the one-end trick. The temporal source positions
for these point-smeared and point-point correlators are always placed close to a boundary.

To compute the baryon spectrum we use standard relativistic interpolators, e.g., we destroy the
nucleon applying Nα = εi jkui

α

(
u jTCγ5dk

)
, where for the quark fields we use Wuppertal smearing

on 3-dimensionally APE smeared gauge links. For the computation of the correlators a custom
version of the CHROMA software package [4] including the LIBHADRONANALYSIS library has
been developed where also the multigrid solver implementation of Refs. [5, 6] is used.

The fitting procedure is based on a two stage process. We first determine the starting point of
the actual fit range by means of a double exponential fit; the time slice where the contribution of
the excited state becomes negligible defines the beginning of the fit range. The end in the case of
baryons is determined as the time slice where the signal to noise ratio of the correlator becomes

7
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Figure 6: Pion and kaon masses (upper plots) and average meson masses (lower plots), normalized to the
average meson mass of the symmetric point for β = 3.4 (left) and β = 3.55 (right) along m = msymm (blue)
and m̃s = m̃s,ph (green). The vertical red bands correspond to the physical values.

small. For pseudoscalar mesons it is a time slice where the contribution to the correlator of states
propagating from the opposite boundary is negligible. This is estimated by fitting the correlator to
the functional form of a hyperbolic sine close to the boundary. For illustration of this first step we
show the effective masses, fits and fit ranges for the nucleon and the pion correlators for the N300
ensemble (a≈ 0.05fm) in Fig. 5. In a second step we then extract the masses within the determined
fit range by fitting to a single exponential. Autocorrelations are taken into account by means of a
binning analysis where we extrapolate the error to infinite bin size.

7. Comparing chiral extrapolations along m = msymm with m̃s = m̃s,ph

As outlined in Sec. 2 we have two chiral trajectories at hand for extrapolating to the physical
point. It is of particular interest to check how consistent the results will be for masses not directly
related to the quark mass ratio used to define the physical point.

We start with the pion and kaon masses at the β values where both chiral trajectories are avail-
able, β = 3.4 and β = 3.55. The squared average meson mass is defined as X2

π ≡
(
2m2

K +m2
π

)
/3.

Note that φ4, which has been used for the tuning process, is proportional to X2
π : φ4 = 12t0 X2

π . Also
X2

π , as well as t0, is constant along the m = msymm line in NLO χPT. In the upper plots of Fig. 6
we show the pion and kaon masses along both trajectories, normalized with respect to the average
meson mass determined at the symmetric point, as functions of the ratio of the light AWI quark
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Figure 7: Baryon octet masses (upper plots) and decuplet masses (lower plots) normalized by the average
octet, respectively decuplet, mass of the symmetric point for β = 3.4 (left) and β = 3.55 (right) along the
two chiral trajectories m = msymm (blue) and m̃s = m̃s,ph (green). The vertical red bands correspond to the
physical values.

mass over its physical point value. In this way we can compare results obtained at different values
of β in a way that is independent of the lattice spacing and renormalization constants. The lines
shown correspond to linear fits to the respective pairs of data sets, without constraining them to
coincide at the physical point. We find the kaon mass lines intersect nicely at the physical point.
This also holds for the average meson mass, see the lower plots in Fig. 6. Only in one case we find
a small difference between the intersection point and the physical point. For the moment being we
aimed for a qualitative comparison and neglected effects due to the lattice spacing and/or higher
orders of χPT. A detailed analysis is currently ongoing.

We now proceed to baryon masses. We define the average octet and decuplet baryon masses XN

and X∆ as XN ≡ (mN +mΣ +mΞ)/3 and X∆ = (2M∆ +MΩ)/3, respectively [14]. These, to leading
order in SU(3) χPT are constant along the m = msymm trajectory while individual baryon masses
are linear functions of the quark masses. Since along our m = msymm trajectory the strange quark
mass linearly depends on the light quark mass (up to lattice artefacts), as a first approximation one
can attempt linear fits.

In Fig. 7 we plot the octet and decuplet baryon masses in a similar way as the pseudoscalar
mesons discussed above. Again, the independent linear fits describe all data reasonably well. In
particular, we find agreement of both chiral trajectories at the physical point. For comparison we
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Figure 8: Ratios of average hadron masses for β = 3.4 (left) and β = 3.55 (right) along the two chiral
trajectories m = msymm (blue) and m̃s = m̃s,ph (green). The red bands correspond to the physical values, the
horizontal bands to the values extrapolated to the physical point.

also show the experimental values (red lines). Finally, in Fig. 8 we extrapolate ratios of average
masses. Also in this case at the physical point we find agreement on the one- to two-sigma level
between the two mass plane trajectories and experiment.

For all these quantities we are currently investigating lattice spacing effects and effects from
higher orders in chiral perturbation theory.

8. Scale setting

To assign a scale to the lattice spacing at a given value of the inverse coupling β we need to
equate a dimensionful observable to its experimental value. The latter is only available at the phys-
ical point, thereby necessitating a chiral extrapolation. Purely gluonic observables have a reduced
quark mass dependence and therefore a milder chiral extrapolation. Some of these can also be
determined quite accurately with a small computational effort and therefore, while not measurable
in experiment, are a prime choice for an intermediate scale to translate between different lattice
spacings. One such example is t0. As can be seen in Fig. 9 its mass dependence is very mild along
m=msymm, nevertheless there is some curvature visible in the data, especially at β = 3.4. However,
in the end one has to assign a continuum, physical point value to t0. Here we have used the value
obtained by BMW-c [17] using the mass of the Ω baryon. Their error on t0 translates into a 1.7%
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Figure 9: Chiral extrapolations of t0 for β = 3.4 (left) and β = 3.55 (right) along the two chiral trajectories
m = msymm (blue) and m̃s = m̃s,ph (green). The red bands correspond to the physical values. Plots taken from
Ref. [13].

error on the lattice spacing. Another (compatible) result was obtained recently on CLS ensembles
from pseudoscalar decay constants [19].

One may also use continuum limit extrapolated baryon masses to set the scale. Below we
present a comparison of relative errors that we get when determining the scale using different
baryons:

mΞ : 0.4% , mΞ? : 0.9% mΩ : 0.7% , XN : 0.6%. (8.1)

These errors are all smaller than 1.7%, however, we have not yet carried out the continuum limit
extrapolation. Also these values must be considered preliminary until we scrutinize the chiral
extrapolations. To illustrate the effect on the lattice spacings of using different scale setting meth-
ods we quote (preliminary) numbers for a at β = 3.4 : aXN ≈ 0.0833(4)fm, compared to at0 =

0.0854(15)fm, and at β = 3.55 : aXN ≈ 0.0632(5)fm, compared to at0 = 0.0644(11)fm.

9. Continuum extrapolation along the symmetric point

In the near future we will perform a combined extrapolation of the hadron spectrum to the
continuum limit and the physical point. It is particularly subtle to disentangle O(a2) effects from
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Figure 10: φ4,
√

t0XN , and
√

t0X∆ at the symmetric point versus a2/t0. The red bands correspond to the
physical values.
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Figure 11: XN/X∆ (left plot) at the symmetric point versus a2/t0. The red band corresponds to the physical
value, the blue band indicates the error from a fit to a constant. Right: gA at the symmetric point versus a2.
The lines correspond to linear fits in a2. The left-most four data points are also compatible with a constant.

quark mass effects. Therefore, as a first step it is informative to investigate the continuum limit of
various quantities at the symmetric point, which by definition is at a fixed renormalized quark mass
since the dimensionless combination φ4 is matched across the different lattice spacings. However,
there is some deviation from the initial target value φ4 = 1.15 between different values of β , which
is illustrated in the left plot of Fig. 10 and is also visible in Fig. 2. From Fig. 10 it is clear that this
also affects other quantities.

In order to take the continuum limit, usually we will have to correct for this mismatch. Here
we focus on two quantities which we expect to exhibit only a very small quark mass dependence
along the symmetric line. In Fig. 11 we show the ratio of the average octet over decuplet mass as
a function of a2 in units of t0. We observe a very flat behaviour suggesting a rather mild cut-off
dependence for this observable.

Another quantity which should not significantly change, varying the pion mass by a few per
cent around 420 MeV, is the axial isovector charge of the nucleon gA. This was determined fol-
lowing the N f = 2 computation described in Ref. [20], using the renormalization constant ZA of
Ref. [21] and the improvement parameter bA of Ref. [22]. In the right panel of Fig. 11 we plot
gA, again at the symmetric point, together with two fits linear in a2. Clearly, we would have over-
estimated the correct continuum limit value had we only fitted the coarsest three data points (fit
not shown). This demonstrates that a broad window of lattice spacings is compulsory. Note that
we significantly underestimate the experimental physical point value, as we should at such a large
quark mass. A more detailed analysis is ongoing.

10. Summary and Outlook

We have presented results on AWI quark masses, pseudoscalar meson and baryon spectra
as well as on gA from lattice simulations on N f = 2+ 1 ensembles generated within CLS. The
use of open boundaries avoids topological freezing as a→ 0 and will allow us to take a controlled
continuum limit. This was demonstrated for two examples, namely the ratio of the nucleon over the
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∆ mass and the axial coupling of the nucleon gA, albeit at a large pion mass value. Our results cover
pion masses mPS ≈ 200–700 MeV at lattice spacings ranging from a≈ 0.085 down to a≈ 0.04 fm.
Using LO χPT, we have extrapolated the masses to the physical point along two trajectories (m =

msymm and m̃s = m̃s,ph). Combined fits using Gell-Mann–Okubo type expansions as well as SU(3)
χPT along all three trajectories (including ms = m`) are currently in progress. This will allow us
to extract SU(3) low energy constants (LECs), while the m̃s = m̃s,ph trajectory yields additional
information on the SU(2) LECs.

The spectrum calculations constitute a preparatory step for an independent determination of
the lattice scale and of light quark masses. A more detailed analysis of the nucleon structure and
other additional observables covering a large range of lattice spacings will follow in the near future.
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