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We study the interaction of s-wave ΣcN state in the I(JP) = 1
2 (1

+) channel. Since this state cou-
ples to the s-wave ΛcN (JP = 1+) state, we have utilized the extension of the HAL QCD method
to extract the coupled channel potential for the ΛcN −ΣcN system. In our simulation, we em-
ploy gauge configurations generated by the PACS-CS Collaboration at a = 0.0907(13) fm on a
L3 × T = 323 × 64 lattice (La = 2.902(42) fm). We employ three ensembles corresponding to
mπ = 410,570,700 MeV to study the quark mass dependence of the ΛcN − ΣcN interactions.
To reduce the discretization error coming from the heavy quark mass, we employ the relativis-
tic heavy quark (RHQ) action for the charm quark. The phase shifts and scattering length ob-
tained from the extracted potential matrix show that the ΣcN interaction is attractive at low energy
stronger than the ΛcN interaction though no bound state at mπ ≥ 410 MeV.
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1. Introduction

It is interesting and important to determine the nature of interactions between nucleon and
heavy baryon such as Λc. For example, if the ΛcN interaction is attractive, the net attraction be-
tween Λc and nucleus becomes stronger as the atomic number of the nucleus increases, so that
Λc-nucleus can be formed. Indeed the OBEP model extended to the flavor SU(4) [1] first suggested
the attractive interactions for ΛcN and ΣcN systems and thus existences of Λc-nuclei and Σc-nuclei.
Some recent works have claimed that even the charmed 2-body systems have bound states[2, 3, 4].
Unfortunately, due to the lack of scattering data, one can not confirm these theoretical predictions
so far. Therefore a determination of these interaction from QCD is mandatory.

Recently, an approach to investigate hadron interactions in lattice QCD has been proposed
[5, 6] and extensively developed by the HAL QCD Collaboration[7, 8, 9, 10, 11, 12, 13, 14, 15].
We previously applied this method to the s-wave ΛcN (JP = 0+) interaction[16] and found that
the ΛcN interaction is attractive but not strong enough to have a bound state. This weak attractive
interaction might reflect an absence of one-pion exchange between Λc and N.

In this report, we instead consider the ΣcN interaction, which may have stronger attraction due
to the presence of the one-pion exchange between them. In particular, we focus our attention on the
JP = 1+ channel of the ΣcN system, since the one-pion exchange generates the tensor force, which
plays an important role to form the bound deuteron for the NN system. We employ the HAL QCD
method to investigate the interaction of the s-wave ΣcN (JP = 1+) system with I = 1/2. Since
this system couples to the s-wave ΛcN (JP = 1+) system, whose total mass is lower than that of
ΣcN, we utilize the extension of the HAL QCD method[15, 17, 18] to extract the coupled channel
potential for the ΛcN −ΣcN system.

After introducing our methodology in Sec. 2 and details of numerical simulations in Sec. 3, we
present our results on the coupled-channel potential for the ΛcN −ΣcN system in the s-wave JP =

1+ state in Sec. 4.1. We also calculate the phase shift and scattering length by solving Schrödinger
equartion with the extracted potential in Sec. 4.2. We give our conclusion on the nature of the ΣcN
interaction in Sec. 5.

2. HAL QCD method

In this section, we briefly review the coupled channel HAL QCD method[17, 18]. A key
quantity in the HAL QCD method is the equal-time Nambu-Bethe-Salpeter (NBS) wave function,
which encodes informations of scattering phase shifts in its asymptotic behavior[17]. The NBS
wave function with the total energy Wn is defined as

ψC
Wn
(⃗r)e−Wnt =

1√
ZC1

√
ZC2

∑⃗
x
⟨0|BC1 (⃗r+ x⃗, t)BC2 (⃗x, t)|B,Wn⟩, (2.1)

where the index C denote the flavor channel (C = ΛcN, ΣcN), and BCi (⃗x, t) is the local interpolating
operator for the baryon Ci with its renormalization factor

√
ZCi . The state |B,Wn⟩ stands for the

QCD eigenstate for baryon number B with the relativistic energy. From the NBS wave functions,
we define the non-local potentials through the following coupled-channel Schrödinger equation,(

EC
n −HC

0
)

ψC
Wn
(⃗r) = ∑

C′

∫
d3r′ UC,C′

(⃗r, r⃗′)ψC′
Wn
(⃗r′), (2.2)
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where HC
0 = −∇2/2µC with the reduced mass µC = mC1mC2/(mC1 +mC2), and EC

n = k2
n/2µC is a

non-relativistic energy of the C channel in the center-of-mass (CM) frame. In order to handle the
non-locality of the potential, we introduce the derivative expansion of the non-local potential,

U (⃗r, r⃗′) = (VLO(⃗r)+VNLO(⃗r,∇)+ · · ·)δ (3)(⃗r− r⃗′). (2.3)

where NnLO term of the local potential is O (⃗∇n). At low energy, the VLO dominates and then the
coupled-channel potential matrix can be calculated by using the NBS wave functions. In the case
of ΛcN −ΣcN coupled channel, the potential matrix is extracted as(

V ΛcN,ΛcN (⃗r) V ΛcN,ΣcN (⃗r)
V ΣcN,ΛcN (⃗r) V ΣcN,ΣcN (⃗r)

)
=

(
KΛcN

W1
(⃗r) KΛcN

W2
(⃗r)

KΣcN
W1

(⃗r) KΣcN
W2

(⃗r)

)(
ψΛcN

W1
(⃗r) ψΛcN

W2
(⃗r)

ψΣcN
W1

(⃗r) ψΣcN
W2

(⃗r)

)−1

, (2.4)

where KC
Wn
(⃗r)≡

(
EC

n −HC
0

)
ψC

Wn
(⃗r).

The NBS wave functions can be extracted from the baryon four-points correlation function on
the lattice defined by

GCC′
(⃗r, t − t0) = ∑⃗

x
⟨0|BC1 (⃗r+ x⃗, t)BC2 (⃗x, t)J C′

wall(t0)|0⟩ (2.5)

=
√

ZC1
√

ZC2 ∑
n

ψC
Wn
(⃗r)e−Wn(t−t0)AC′

n + · · · , (2.6)

with AC′
n = ⟨B,Wn|J C′

wall(0)|0⟩, where J C′
wall(t0) stands for the zero momentum wall source operator

which creates two-baryon states in channel C′. The ellipses denote inelastic contributions coming
from channels above C and C′. The ground state of the NBS wave function can be extracted for
sufficiently large t, where contributions from all excited states can be neglected. Since the signal-
to-noise ratio of the baryon four-points correlation function decreases exponentially for larger t,
however, we instead employ the time-dependent HAL QCD method[9], which does not require the
grand state saturation for the extraction of potentials. With the approximation neglecting O(k4)

contributions, the normalized baryon four-points correlation function RCC′
(⃗r, t − t0) ≡ GCC′

(⃗r, t −
t0)/e−(mC1+mC2 )(t−t0) satisfies following relation for a sufficiently large t where contributions from
inelastic states above C and C′ channels can be neglected.(

− ∂
∂ t

+

[
1+(δC)2

8µC

]
∂ 2

∂ t2 −HC
0

)
RCC′

(⃗r, t − t0) = ∑
C′′

∫
d3r′ ∆C,C′′

UC,C′′
(⃗r, r⃗′)RC′′C′

(⃗r′, t − t0),

(2.7)

where δC denotes δC = (mC1 −mC2)/(mC1 +mC2) and ∆C,C′′
is defined as

∆C,C′′
=

√
ZC1

√
ZC2 exp[−(mC′′

1 +mC′′
2 )(t − t0)]√

ZC′′
1

√
ZC′′

2 exp[−(mC1 +mC2)(t − t0)]
. (2.8)

In the case of the ΛcN −ΣcN system, the potential matrix at the LO of the velocity expansion is
extracted as(

V ΛcN,ΛcN ∆ΛcN,ΣcNV ΛcN,ΣcN

∆ΣcN,ΛcNV ΣcN,ΛcN V ΣcN,ΣcN

)
=

(
K ΛcN,ΛcN K ΛcN,ΣcN

K ΣcN,ΛcN K ΣcN,ΣcN

)(
RΛcN,ΛcN RΛcN,ΣcN

RΣcN,ΛcN RΣcN,ΣcN

)−1

,

(2.9)
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Table 1: The hadron masses calculated on PACS-CS configurations.
Hadron Ensemble 1 Ensemble 2 Ensemble 3

π 702 (2) MeV 570 (1) MeV 412 (2) MeV
N 1581 (6) MeV 1399 (9) MeV 1215 (9) MeV
Λc 2685 (3) MeV 2555 (5) MeV 2434 (6) MeV
Σc 2780 (5) MeV 2674 (7) MeV 2575 (9) MeV

where we omit (⃗r, t − t0) for simplicity and K CC′
is defined as

K CC′
(⃗r, t − t0) =

(
− ∂

∂ t
+

[
1+(δC)2

8µC

]
∂ 2

∂ t2 −HC
0

)
RCC′

(⃗r, t − t0). (2.10)

3. Lattice setup

For numerical simulations, we have employed the 2+1 flavor full QCD configurations gener-
ated by the PACS-CS Collaboration[19] with the renormalization-group improved Iwasaki gauge
action and a nonperturbatively O(a) improved Wilson quark action. The lattice size is L3 ×T =

323 ×64 and the lattice spacing is a = 0.0907(13) fm (physical lattice size is La = 2.902(42) fm).
In order to see the quark mass dependence of the potential, we have employed three ensembles
of gauge configurations correspond to mπ = 702(2), 570(1), 412(2) MeV. We employed the rela-
tivistic heavy quark (RHQ) action[20] to reduce the leading O((mQa)n) discretization errors with
charm quark mass mQ. We employ the RHQ parameters determined in Ref.[21] so as to reproduce
ηC (2983) and J/ψ (3097) masses in nature. Hadron masses calculated on these configurations are
given in Table 1.

4. Numerical results

4.1 Potentials

In Fig.1, we show the numerical results of the s-wave ΛcN −ΣcN coupled-channel potential
matrix in the JP = 1+ state. Each of the figures contain results of potentials for three different pion
masses. They correspond to so-called effective central potentials in which the effects of tensor
forces are implicitly included. In Fig.1, we observe a strong attraction in the VΣcN,ΣcN potential,
which might be a manifestation of the one-pion exchange, while the VΛcN,ΛcN potential, which is
consistent with that from the single-channel analysis[16], remains weak. Both diagonal potentials
have strong pion-mass dependences. On the other hand, the strength of the off-diagonal potentials
is weak and they are almost independent of pion masses.

4.2 Phase shift and scattering length

Once we obtain the potential matrix, we can calculate the phase shifts of ΛcN and ΣcN in the
infinite volume. For this purpose, we employ the four-ranges Gaussian for the fit function given by

V (r) =
4

∑
n=1

ane−(
r

bn )
2

. (4.1)
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Figure 1: The s-wave ΛcN −ΣcN coupled-channel potential matrix in the JP = 1+ state. Different colors
represent different pion masses. The time separation between sink and source is t − t0 = 10.

With the fitted function, we solve the coupled-channel Schrödinger equation and we extract the S
matrix from the asymptotic form of the wave function as(

ψΛcN(r)
ψΣcN(r)

)
=

(
h(1)0 (kr) 0

0 h(1)0 (qr)

)(
CΛcN

CΣcN

)
+

(
h(2)0 (kr) 0

0 h(2)0 (qr)

)(
SΛcN,ΛcN SΛcN,ΣcN

SΣcN,ΛcN SΣcN,ΣcN

)(
CΛcN

CΣcN

)
,

(4.2)
where h(1)l (kr) and h(2)l (kr) are Spherical Hankel functions for the angular momentum l, and
C{ΛcN, ΣcN} are constants determined from the boundary condition. Here k (q) represents an ab-
solute value of the relative momentum in the CM frame for the ΛcN (ΣcN) channel. The definition
of the phase shift for the coupled channel system is given in Ref.[22] as(

SΛcN,ΛcN SΛcN,ΣcN

SΣcN,ΛcN SΣcN,ΣcN

)
≡

(
eiδ̄ΛcN 0

0 eiδ̄ΣcN

)(
cos2θ̄ isin2θ̄
isin2θ̄ cos2θ̄

)(
eiδ̄ΛcN 0

0 eiδ̄ΣcN

)
, (4.3)

where δ̄ is so-called the bar phase shift and θ̄ is the mixing angle. To retain the unitarity of the
S-matrix, two off-diagonal elements of the potential matrix are replaced by their average, though
the result obtained with the original potential matrix does not change within statistical errors.

Fig.2 shows the phase shifts of the ΛcN and the ΣcN channels on the three ensembles. In
Fig.2, we find that there are no bound state for both ΛcN and ΣcN channels at all pion masses, even
though the attraction of the ΣcN channel at low energy is stronger than that of the ΛcN channel. We
also find that the mixing angle between ΛcN and ΣcN is small (|θ̄ | < 3◦). This observation might

4
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Figure 2: The phase shifts of s-wave ΛcN(left) and s-wave ΣcN(right) in the JP = 1+ state. Different colors
represent different pion masses.

Table 2: The scattering lengths calculated by using Eq.(4.4).
mπ 702(2) MeV 570(1) MeV 412(2) MeV

aΛcN 0.46 (18) fm 0.29 (13) fm 0.29 (16) fm
aΣcN 2.71 (97) fm 2.02 (86) fm 4.00 (1.97) fm

be understood from the fact that the mass splitting between the ΛcN and the ΣcN is large. Since the
two channels are almost independent each other due to the small mixing and thus can be regarded
as two single channels, we define the scattering lengths of ΛcN (ΣcN) as

aΛcN = lim
k→0

tan δ̄ΛcN(k)
k

, aΣcN = lim
q→0

tan δ̄ΣcN(q)
q

, (4.4)

and results are given in Table 2. It seems that the scattering length of ΣcN increases as the pion
mass decreases though statistical errors are large, while the one of ΛcN is almost independent of
the pion masses.

5. Summary

We have investigated the s-wave ΣcN interaction in the I(JP) = 1
2(1

+) state using the ΛcN −
ΣcN coupled channel potentials obtained by the extension of the HAL QCD method. In order
to study the pion mass dependence, we have employed three ensembles of gauge configurations
generated at mπ = 702(2),570(1),412(2) MeV. Results of the potential matrix show that the ΣcN
interaction is attractive at low energy stronger than the ΛcN interaction, probably due to the one-
pion exchange. We have also observed weak off-diagonal elements of the potential matrix. The
phase shifts and mixing angle extracted by solving Schrödinger equation in the infinite volume with
the obtained potentials show that that the ΣcN channel does not have the two-body bound state at
mπ ≥ 410 MeV, even though the net attraction of the ΣcN channel is stronger than that of the ΛcN

5
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channel. The mixing angle between ΛcN and ΣcN channel also indicates a small coupling between
the two.

In future, we will calculate the s-wave ΣcN interaction in the I(JP) = 1
2(0

+) state to investigate
the spin-dependence. We will also calculate the interaction of the ΣcN system at physical pion mass.
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