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1. Motivation

Many large scale QCD simulations are carried out in the 2+1 flavor theory, i.e. with light
quarks only [1, 2, 3, 4, 5]. There are several good reasons for this choice.

1. Lattices that are large enough to accommodate (nearly) physical pions, are usually too coarse
to resolve correlation lengths associated with charm quarks. Trying to do so leads to pro-
nounced lattice artifacts [6, 7].

2. Each additional quark flavor increases the costs of the simulation significantly. Moreover,
the effort of tuning the bare parameters leading to a well-defined chiral trajectory is greatly
increased.

3. There is strong evidence that the effect of a dynamical charm quark on low energy quantities
requires a very high precision to be resolved [8, 9].

On the other hand, charm physics becomes more and more interesting. Experiments like Belle,
CLEO and BABAR keep discovering new hidden and open charm-states, many of which are poorly
understood. Consequently, a huge effort is made to explain some of these findings from first prin-
ciples. But how reliable is charm physics on ensembles without a dynamical charm quark?

Our goal is the estimation of the effect of “quenching” the charm quark, on quantities that
contain valence charm quarks, e.g. on the charmonium mass spectrum.

2. QCD with two heavy quarks

To avoid the usual multi-scale problem, we consider a simplified version of QCD, namely
a SU(3) Yang-Mills theory coupled to two degenerate heavy quarks. This allows us to perform
simulations in relatively small volumes with very small lattice spacings. As a discretization we use
Wilson’s plaquette gauge action and a clover improved doublet of twisted mass Wilson fermions.
At maximal twist, the clover term with non-perturbatively determined [10] coefficient csw is not
necessary for O(a) improvement of physical observables. However, it was found that its inclusion
reduces the O(a2) lattice artifacts, see e.g. [11].

At the small lattice spacings of our simulations, critical slowing down is a major obstacle. We
use open boundary conditions in the time directions to keep auto-correlation times associated with
the topological charge manageable [12]. The boundary improvement coefficients are kept at their
tree-level values cG = 1 and cF = 1.

The bare coupling was chosen such that the lattice spacings cover the range 0.023 fm . a .
0.036 fm. The hopping parameter κ was set to its critical value in order to achieve maximal twist.
The critical values were obtained from an interpolation of published data [13, 14]. The twisted
mass parameter µ was chosen such that the RGI mass in our simulations matches that of a charm
quark, more precisely, at a given value of the bare coupling the twisted mass parameter is

aµ =
M

ΛMS
ZP(L1)

m̄(L1)

M
ΛMSL1

a
L1

, (2.1)

where we set M
ΛMS

= 4.87. The pseudo-scalar renormalization constant at renormalization scale L−1
1

in the Schrödinger Functional scheme, the relation between the running and the RGI mass m̄/M
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ID T
a ×

(L
a

)3
β κ aµ r0/a t0/a2 MDUs

P 120×323 5.700 0.136698 0.113200 9.131(56) 9.105(37) 8592
W 192×483 6.000 0.136335 0.072557 14.27(15) 22.36(13) 22400

qP 120×323 6.340 (0.1357769) (0.11, 0.12, 0.13) 9.029(80) 9.035(30) 20080
qW 192×483 6.672 (0.1353155) (0.07, 0.08, 0.09) 14.103(94) 21.925(82) 73920
qX 192×643 6.900 (0.1344651) (0.054) 18.65(24) 39.43(17) 100000

(0.1344597) (0.056)
(0.1344540) (0.058)

Table 1: Simulation parameters of our ensembles. The columns show the ensemble names, the lattice sizes,
the gauge couplings β = 6/g2

0, the hopping parameters (for maximal twist), the twisted mass parameters, the
scales r0/a and t0/a2 and the total statistics in molecular dynamics units. The quenched simulations qP, qW
and qX need mass parameters only for the measurements, they are given in parentheses. Three values of µ

were used for the quenched measurements.

and the Λ parameter of two flavor QCD in units of L1 are known from [13]. To obtain the scale L1

in lattice units at a particular value of the bare coupling, short interpolations were necessary. Some
of the quantities entering eq. (2.1) have rather large errors. The errors of ZP and of the relative scale
change are propagated throughout our calculation, while the other amount to a change in the target
value for M/Λ.

In order to quantify the impact of dynamical charm quarks, we also simulate the pure gauge
theory at values of the scales r0/a, t0/a2 which are similar or larger. Table 1 summarizes our
ensembles.

3. Strategy

On the generated ensembles we measure the following quantities:

3.1 Gradient flow observables

A gradient flow equation can be solved in order to relate the simulated gauge fields to gauge
fields at a fictitious flow-time t [15]. Local operators built from gauge fields at finite flow time
do not require renormalization and have variances that remain finite in the continuum limit. One
particularly useful flow quantity is the flow scale t0 defined by [16]

t2
0
〈
Ga

µν(t0)G
a
µν(t0)

〉
= 0.3 , (3.1)

where Gµν(t) is the field strength tensor at flow time t. We use a symmetric (clover) discretization
of Gµν and the Wilson action in the flow equation, exactly as in [16]. The action density is averaged
over the time-slices far away from the temporal boundaries.

3.2 Wilson loops

Another set of useful, purely gluonic, observables are the Wilson loops. We follow [17] and
measure Wilson loops where the initial and final line of gauge links are smeared using up to four

2



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
1
2
6

Impact of dynamical charm quarks Tomasz Korzec

levels of HYP smearing. This allows us to extract the static-quark potential aV (r) very reliably by
solving a generalized eigenvalue problem [18]. The static force F(r) = V ′(r) can then be used to
measure the hadronic scale r0 defined implicitly through r2F(r)

∣∣
r=r0

= 1.65 [19] or a renormalized
coupling at scale r−1, that can be defined by

αqq(r−1) =
1

CF
r2F(r) . (3.2)

3.3 Meson correlation functions

In addition to purely gluonic observables, we measure meson correlation functions1

COΓ,OΩ
(x0,y0) = 〈OΓ(x0)O

†
Ω
(y0)〉 (3.3)

with OΓ(x0) = ∑
~x

c̄(x)Γc′(x) , Γ ∈ {γ5,γ0γ5,γ1,γ2,γ3} . (3.4)

Here c and c′ denote the two flavors in a twisted mass doublet. The measurements involve stochastic
time-diluted estimators with 16 U(1) noise vectors.

The ground state energy amO in a channel determined by the choice of O is then given by the
weighted plateau average of the effective mass

ameff
O (x0) = log

[
COO(a,x0)

COO(a,x0 +a)

]
. (3.5)

Of particular interest will be the pseudo-scalar and vector mass mP = mOγ5
, mV = mOγ1

= mOγ2
=

mOγ3
. Around the charm quark mass both pseudo-scalar and vector correlators can be measured

very precisely up to large distances between source and sink. Figure 1 shows the effective masses
and the plateaux averages for the case of the qX ensemble.

In addition to the meson masses, we monitor the PCAC mass, to make sure that we are close
enough to maximal twist on all ensembles.

20 40 60 80 100 120 140 160

x0/a

0.26

0.28

0.3

0.32

0.34

a
m

e
ff

Figure 1: Effective masses and plateaux averages of the ground states in the pseudo-scalar (circles) and the
vector (diamonds) channel on the ensemble qX.

3.4 Quenched measurements

In the N f = 0 calculations the mass and twisted mass parameters κ and µ are required only
for the computation of observables with valence quarks. The two conditions that fix these bare

1Given here in the physical basis. In the twisted basis, the vector operators acquire an additional factor γ5.
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parameters are that we want to be at maximal twist ↔ mPCAC = 0, and that we want to be at the
same pseudo-scalar mass as in the dynamical simulations↔√t0mP = [

√
t0mP]

N f =2
cont. . The critical

hopping parameters were obtained from an interpolation of values in [20], where also csw was
determined non-perturbatively. The measurements were carried out at three values of µ , so that a
safe interpolation to the tuning-point could be performed. The PCAC masses turned out to be too
large on the qX ensemble, so the parameter κ was re-tuned (for each µ value separately). Figure 2
shows the interpolation procedure on the ensemble qP. The situation is very similar for the two finer
lattices. On the quenched ensembles qP, qW and qX the twisted mass parameters aµ∗ that lead to√

t0mP = 1.816(32) are aµ∗ = 0.1233(03)(32), aµ∗ = 0.0781(03)(20) and aµ∗ = 0.0581(02)(15)
respectively. The source of the first error is the statistical precision of

√
t0mP on the quenched

ensembles. The second error is due to the uncertainty of the tuning goal.

a2/t0

m
P

√
t 0

0 0.02 0.04 0.06 0.08 0.1 0.12
1.74

1.76

1.78
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1.84

1.86

aµ

√
t 0
m √

t0m
Nf=2
P

0.11 0.115 0.12 0.125 0.13

1.7

1.75

1.8

1.85

1.9

1.95

2

Figure 2: The left panel shows the continuum extrapolation of the pseudo-scalar mass in units of
√

t0 on the
N f = 2 ensembles. Extrapolations both constant and linear in a2 are shown. The continuum result from the
linear extrapolation is used to define the tuning point for the quenched ensembles. The smaller error bars are
statistical errors, while the complete errors contain contributions from uncertainties in aµ . The right panel
shows the interpolation of the measured pseudo-scalar masses (open circles) on the N f = 0 ensemble qP.
The horizontal lines depict the tuning point and its error. The vertical lines are the resulting interpolated
twisted mass parameter aµ∗ and its statistical error. The measured vector meson masses (open squares) can
then be interpolated to the tuning point, resulting in the solid square point. The depicted error does not
contain the uncertainty in aµ∗, which however is taken into account in our final results.

4. Results and conclusions

In low energy observables we cannot resolve an effect of the dynamical heavy quark. This is
shown in figure 3 for the ratio of hadronic scales r0√

t0
, for which an effect of . 0.3% was predicted

in [8]. At our current precision of 1.5% it would be a surprise to see a significant difference.
Another example is given by αqq(r−1) at low energies. Here however a difference that cannot

be explained by lattice artifacts is observed, once the renormalization scale rises to about 2 GeV.
Two cases of observables involving valence charm quarks are shown in figure 4. The first is

the ratio of vector over pseudo-scalar meson mass. This quantity is particularly precise, because
the two mesons have a similar dependence on the bare mass and errors due to uncertainties in aµ∗

cancel to a large extent. We find that the impact of dynamical charm content in the sea on this
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Figure 3: Comparison of purely gluonic observables in N f = 2 and N f = 0 theories. In the left panel the
continuum extrapolations of a dimensionless ratio of scales in the two theories is shown. The continuum
results (solid markers) are compatible with each other. In the right panel the results for the renormalized
coupling of eq. (3.2) are shown for all our ensembles. The solid lines stem from N f = 0 four loop perturbation
theory. Their spread is due to the uncertainty in Λ. The relative deviation from perturbation theory at high
energies is shown separately. Here a clear dependence of αqq on the number of flavors can be observed.
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Figure 4: The left panel shows the continuum extrapolation of the ratio of vector to pseudo-scalar meson
mass. The continuum extrapolated values with errors are shown. The measured ratio of the corresponding
charmed mesons is shown as well. Light sea quarks, disconnected contributions and electromagnetism are
presumably responsible for the 1% deviation to our number. The right panel shows a continuum extrapolation
of the running masses. Their continuum values are translated to RGI masses which are shown as well. In
the N f = 0 case, the smaller error neglects uncertainties in aµ∗, while the larger includes them.

quantity is tiny and below 0.3%. The second is the RGI quark mass Mc in units of
√

t0. We first
determine the continuum values of m̄

√
t0. The agreement/disagreement of these continuum values

is meaningless, because the running masses m̄ are not renormalized at the same scale. However,
since the ratios m̄/M are known in the two theories [13, 21], both can be translated into a RGI
mass, for which a comparison makes sense. We find a deviation between the RGI masses of the
two theories of (5.5±3.5)%. It would be certainly useful to further reduce the error on this number.
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