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Quark orbital angular momentum (OAM) in the nucleon can be evaluated directly by constructing

the simultaneous distribution of parton transverse position and momentum in a rapidly propagat-

ing nucleon, and using it to perform the appropriate averageover these parton characteristics.

The aforementioned distribution can be accessed via a generalization of the nucleon matrix el-

ements of quark bilocal operators which have been used previously in the lattice evaluation of

transverse momentum dependent parton distributions (TMDs). By supplementing these matrix

elements with a nonzero momentum transfer, mixed transverse position and momentum informa-

tion is generated. In the quark bilocal operators, a gauge connection between the quarks must

be specified; a staple-shaped gauge link path, as used in TMD calculations, yields Jaffe-Manohar

OAM, whereas a straight path yields Ji OAM. A lattice calculation at a pion mass of 518 MeV

is presented which demonstrates that the difference between Ji and Jaffe-Manohar OAM can be

clearly resolved. The obtained Ji OAM is confronted with thetraditional evaluation utilizing Ji’s

sum rule. Jaffe-Manohar OAM is enhanced in magnitude compared to Ji OAM.
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1. Introduction

The manner in which the spin of the nucleon is composed of the spins and orbital angular
momenta (OAM) of quarks and gluons constitutes an importantfacet of understanding nucleon
structure. The complexity of this question becomes apparent already at the stage of defining ap-
propriate observables; the notion of OAM of quarks and gluons is inherently ambiguous in a gauge
theory. Through gauge invariance, quarks are inextricablylinked to gluon fields, and any defini-
tion of quark OAM will include gluonic effects. Among the many ways in which OAM can be
decomposed into quark and gluon contributions, the Jaffe-Manohar [1] and Ji [2] decompositions
have garnered the most attention. Within the framework of Lattice QCD, quark OAM has hitherto
only been calculated indirectly, via Ji’s sum rule [2], which relates total quark angular momentum
J to generalized parton distributions. Subtracting quark spin S yields specifically Ji quark OAM,
L = J − S. On the other hand, Jaffe-Manohar quark OAM has been inaccessible in Lattice QCD
using existing methods.

The present work constitutes a first exploration of a method to evaluate quark OAM directly,
from simultaneous information about partonic transverse position and momentum in a rapidly prop-
agating nucleon. This information is encoded in generalized transverse momentum-dependent par-
ton distributions (GTMDs) [3–5]. Compared to standard TMDs, which parametrize forward ma-
trix elements of an appropriate bilocal quark operator, GTMDs include, in addition, a momentum
transfer. The latter is Fourier conjugate to the quark impact parameter and thus supplements the
transverse momentum information with transverse positioninformation. In contrast to Ji’s sum
rule, this formulation yields access to both Ji as well as Jaffe-Manohar quark OAM, via varying
gauge link paths in the aforementioned quark bilocal operator. Indeed, the data to be presented
below will continuously and gauge-invariantly interpolate between the two definitions. In view of
the similarity between standard TMDs and GTMDs, this work can build to a large extent on the
developments made in previous lattice TMD studies [6,7].

2. Quark orbital angular momentum

The quark OAM componentLU
3 in a longitudinally polarized nucleon propagating in the 3-

direction can be accessed via a GTMD matrix element [4],

LU
3 =

1
2P+

εi j
∂

∂ zT,i

∂
∂∆T, j

〈p′,S′ =~e3|ψ(−z/2)γ+Uψ(z/2)|p,S =~e3〉
S [U ]

∣

∣

∣

∣

z+=z−=0, ∆T =0, zT→0

(2.1)

A number of remarks are in order concerning this expression.The initial and final nucleon mo-
menta are treated symmetrically,p = P−∆T/2, p′ = P+ ∆T /2, where the spatial component ofP
is in 3-direction and the momentum transfer∆T is transverse. Since∆T is Fourier conjugate to the
quark impact parameterbT , evaluating the∆T -derivative at∆T = 0 amounts to averagingbT . On
the other hand, the transverse quark operator separationzT is Fourier conjugate to the transverse
quark momentumkT ; therefore, evaluating thezT -derivative atzT = 0 amounts to averagingkT .
Here, the limitzT → 0 must be taken carefully, since it is associated with ultraviolet divergences.
In aggregate, thus, (2.1) yields the averagebT × kT , i.e., OAM in the 3-direction. Also the longi-
tudinal quark momentum components are integrated over in view of the specificationz+ = z− = 0.
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In the thus constructed average, quark spin direction is immaterial owing to the use of the Dirac
structureγ+. Finally, (2.1) depends on the gauge linkU connecting the quark operators, along with
a soft factorS [U ] which absorbs divergences associated with the quantum fluctuations ofU ; for
present purposes, one may considerS [U ] to include also renormalization factors associated with
the quark field operators. This soft factor is the same as for the standard TMD matrix element [8],
since (2.1) only differs from the latter in the external state, not the operator. The multiplicative
factorS [U ] will be canceled by forming an appropriate ratio below and thus does not need to be
specified in more detail. It is in the path ofU that different definitions of quark OAM are encoded;
(2.1) is a functional ofU . In the present work, staple-shapedU ≡U [−z/2,ηv− z/2,ηv+ z/2,z/2]

are considered, where the arguments ofU are positions joined by straight Wilson lines. Thus, the
vectorv gives the direction of the staple, and the length of the staple is scaled by the parameterη .
For η = 0, one has a straight Wilson line directly connecting the quark operators.

The η = 0 straight gauge link limit corresponds to Ji OAM [9], whereas theη → ±∞ limit
of a staple extending to infinity yields Jaffe-Manohar OAM [10]. Such a staple link incorporates
final state interactions, e.g., in semi-inclusive deep inelastic scattering (SIDIS) processes, with the
staple legs corresponding to the direction of propagation of the struck quark. Thus, Jaffe-Manohar
quark OAM differs from Ji quark OAM in that it includes the integrated torque accumulated by the
struck quark as it leaves the nucleon [11]. In a Lattice QCD calculation, η can be varied quasi-
continuously, with the Jaffe-Manohar limit achieved by extrapolation. This yields a gauge-invariant
interpolation between the Ji and Jaffe-Manohar cases.

In addition, the directionv of the staple needs to be specified. The most straightforwardchoice
for the direction of propagation of the struck quark in a hardscattering process would initially
appear to be a lightlike vector. However, such a choice leadsto severe rapidity divergences, which
are regulated in the scheme advanced in [12, 13] by takingv off the light cone into the spacelike
region. The matrix element (2.1) determining quark OAM therefore depends on the additional
Collins-Soper type parameter

ζ̂ =
v ·P

√

|v2|
√

P2
. (2.2)

The light-cone limit corresponds tôζ → ∞.

As in lattice TMD studies [6, 7], an appropriate ratio of quantities can be employed to cancel
the soft factorS [U ]. A suitable quantity for this purpose is the number of valence quarks

n =
1

2P+

〈p′,S′ =~e3|ψ(−z/2)γ+Uψ(z/2)|p,S =~e3〉
S [U ]

∣

∣

∣

∣

z+=z−=0, ∆T =0, zT→0
(2.3)

which only differs from (2.1) by omitting the weighting withbT × kT (in terms of the Fourier
conjugate variables), and thus counts quarks. The soft factor S [U ] is even inzT , and thus cancels
when forming the ratioLU

3 /n. Furthermore, at finite lattice spacinga, the derivative with respect
to zT in (2.1) is realized as a finite difference, leading to the renormalized quantity evaluated in
practice,

LU
3

n
=

1
da

εi j

∂
∂∆T, j

(Φ(da~ei)−Φ(−da~ei))

Φ(da~ei)+ Φ(−da~ei)

∣

∣

∣

∣

∣

z+=z−=0, ∆T =0

(2.4)
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where summation over the transverse indicesi and j is implied, and the abbreviationΦ(zT ) =

〈p′,S′ =~e3|ψ(−z/2)γ+Uψ(z/2)|p,S =~e3〉 has been introduced. The aforementioned finite dif-
ference is evaluated over a fixed number of lattice spacingsd, approximating the derivative with
respect tozT asa → 0. The stability of (2.4) with varyingd will be examined in the discussion of
numerical results below.

3. Lattice calculation and results

To perform a lattice calculation of the ratio (2.4), the problem must be boosted into a Lorentz
frame in which the TMD operator enteringΦ(zT ) exists at a single time. There is no obstacle to
this, given that the directions ofz andv are both spacelike, cf. the discussion above in connection
with eq. (2.2). In the frame preferred for the lattice calculation, v points in the longitudinal 3-
direction, whereaszT is transverse, in the direction orthogonal to the momentum transfer∆T . In
this frame,Φ(zT ) can be evaluated using standard Lattice QCD methods. Numerical data for the
ratio (2.4) were obtained in a mixed action scheme employingdomain wall valence quarks on a

Figure 1: Quark OAM as a function of the number of
lattice spacingsd used to construct the derivative with
respect tozT in (2.4).
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Figure 2: Ji OAM as a function of̂ζ , with an ad hoc
extrapolation to infiniteζ̂ (open square). The filled
diamond represents the value extracted on the same
ensemble via Ji’s sum rule.

MILC 2+1-flavor gauge ensemble [14] con-
stituted of 203 × 64 lattices with a spac-
ing of a = 0.12fm and a pion massmπ =

518MeV. The source-sink separation em-
ployed was 9a = 1.07fm. The longitudi-
nal nucleon momentum componentsP3 =

0,2π/(aL),4π/(aL) were included in the
calculation, whereL = 20 denotes the spatial
lattice extent. This corresponds to Collins-
Soper parameterŝζ = 0,0.39,0.78. These
values are appreciably below the region in
which perturbative evolution in̂ζ applies; in
view of this, merely an ad hoc extrapolation
to largeζ̂ will be contemplated below. The
most severe limitation of the gathered data
set, however, lies in the momentum trans-
fer ∆T . Eq. (2.4) calls for the evaluation of
the derivative with respect to∆T at ∆T = 0;
this derivative was estimated by a finite dif-
ference using the lowest nonzero∆T avail-
able, which, using standard periodic bound-
ary conditions, is∆T = 4π/(aL) in view of
the symmetric treatment of the initial and fi-
nal nucleon momenta,p = P−∆T /2, p′ =

P+∆T/2. This amounts to a substantial mo-
mentum transfer, and forming a finite differ-
ence using data at this value as opposed to
values very close to zero is expected to lead

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
1
3
8

Quark orbital dynamics in the nucleon Michael Engelhardt

Figure 3: Quark OAM as a function of staple length
η , normalized to the modulus of theη = 0 Ji OAM
value. Asymptotic values were extracted by averaging
over data atη |v|/a = ±7,±8,±9.

to a substantial underestimate of the∆T -
derivative, in view of the typical decay of
form factors with the momentum transfer.

Turning to the numerical data, which, to
be definite regarding flavor content, will be
shown for the proton, Fig. 1 displays data
for LU

3 /n as a function of the number of
lattice spacingsd used to construct thezT -
derivative, for several staple lengthsη at a
fixed ζ̂ = 0.39. The ratio is quite stable un-
der changes ofd, with the variation decreas-
ing towards smaller values ofd, despite the,
in principle, singular nature of thezT → 0
limit. While a more thorough investigation
of this limit will require calculations at sev-
eral lattice spacings, Fig. 1 supports the no-
tion that quark OAM can be estimated via
the ratio (2.4) with fairly little ambiguity us-
ing small values ofd. All data presented in
the following were obtained usingd = 1.

Focusing, to begin with, on theη = 0
Ji limit, Fig. 2 shows results for Ji quark
OAM at the three available values ofζ̂ , to-
gether with an extrapolation using the ad
hoc fit ansatzA + B/ζ̂ . This ansatz proved
to fit data for the Boer-Mulders TMD ra-
tio well in [7]. Also displayed for compar-
ison is the value for Ji quark OAM extracted
on the same gauge ensemble using the stan-
dard method utilizing Ji’s sum rule [15].
The data gathered here underestimate the Ji
sum rule value, a bias that is not unexpected
in view of the poor approximation of the

∆T -derivative, as discussed above. It seems plausible that anaccurate evaluation of this derivative
will bring the values obtained with the two methods to match.In the following, data will be shown
relative to theη = 0 Ji value in order to roughly cancel this systematic bias.

Fig. 3 displays quark OAM data as a function of the staple length for the available values of̂ζ ,
exhibiting the transition from Ji to Jaffe-Manohar OAM. Starting with Ji quark OAM atη = 0, the
struck quark in a deep inelastic scattering process accumulates torque as it is leaving the nucleon,
to finally end up with Jaffe-Manohar OAM at largeη . The effect is substantial, can be clearly
resolved in the data, and is directed such as to enhance the magnitude of OAM compared to the
η = 0 value. It increases witĥζ , and thus is likely to survive the extrapolation to largeζ̂ . Fig. 4
displays such an extrapolation for the integrated torqueτ3 = L(η=∞)

3 /n(η=∞)−L(η=0)
3 /n(η=0) alone,

4
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Figure 4: Torque accumulated by the struck quark, cf.
main text, normalized to the modulus of theη = 0 Ji
OAM value.

using again the fit ansatzA + B/ζ̂ . The ex-
trapolated integrated torque is roughly one
half of the originally present Ji quark OAM.

All data shown up to this point have been
for the isovectoru−d quark combination, in
which disconnected contributions toΦ(zT )

exactly cancel. Fig. 5 shows flavor-separated
data atζ̂ = 0.39, along with the isoscalar
u+ d total quark OAM, analogous to Fig. 3.
In these data, disconnected contributions are
omitted; at the fairly high pion massmπ =

518MeV considered in this work, they are
not expected to be significant. The flavor-
separated data show that the well-known

cancellation betweenu- andd-quark OAM [15] persists away from theη = 0 Ji limit.

4. Conclusions and outlook

The direct evaluation of quark OAM in the nucleon via GTMD-related quantities is feasible
and allows one to access not only Ji, but also Jaffe-Manohar OAM. By generalizing the TMD ma-
trix element employed in previous lattice TMD studies [6,7]to non-vanishing momentum transfer,
quark transverse momentum information is supplemented with impact parameter information, per-
mitting the extraction of OAM. Cancellation of multiplicative soft factors and quark renormaliza-
tion constants is achieved by forming an appropriate ratio;ultimately, one evaluates OAM in units
of the number of valence quarks. The difference between the Ji and Jaffe-Manohar definitions is
encoded in the form of the gauge link connecting the quark fields in the bilocal TMD operator; a

Figure 5: Flavor-separated OAM, analogous to Fig. 3.
The u-quark data have been multiplied by 2 to com-
pensate forn = 2 in theu-quark case. Isoscalar (total)
OAM was obtained by adding the “d” and “2u” data.
Normalization is still by the magnitude ofu− d Ji
OAM, i.e., atη = 0, the “2u” and “d” data differ by
unity.

straight gauge link yields Ji OAM, whereas
an (infinitely long) staple-shaped gauge link
yields its Jaffe-Manohar counterpart. In
the lattice calculation, a quasi-continuous
gauge-invariant interpolation between these
two limits is obtained by varying the length
of the staple. Physically, this amounts to
observing the struck quark in a deep inelas-
tic scattering process start with Ji OAM and
then accumulate torque due to final state
interactions until it asymptotically attains
Jaffe-Manohar OAM. This effect is seen to
be substantial, enhancing the quark’s OAM
by an increment amounting to roughly one
half of the original Ji OAM.

The principal shortcoming of the data set
generated in the present work lies in the

5
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estimate of the derivative with respect to momentum transfer ∆T in the ∆T = 0 limit in (2.4). It
was obtained via a finite difference using data at a substantial value of∆T , which appreciably
underestimates the derivative, causing, presumably, the discrepancy observed in Fig. 2. Work
is underway to completely remove this systematic bias by employing a method to evaluate the
derivative exactly [16]. Furthermore, the treatment of larger values ofζ̂ , accessible using larger
nucleon momentaP, is desirable; the use of improved finite momentum nucleon sources [17] will
be helpful in this respect. Also the exploration of quark OAMevolution via studies at varying
lattice spacings is of interest, and investigations at lighter pion masses must be pursued.
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