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The effects of double hard interactions are no longer negligible at energy scales reached at the
LHC. Double parton scattering (DPS) processes are often described by taking the product of two
single parton scattering processes assuming that interference effects are very small. We calculate
four point functions (4pt-functions), which appear in the the DPS cross section, employing lattice
techniques. We consider a pion at rest and test the validity of the afore-mentioned factorization
assumption by convoluting two pion form factors and comparing the result to the 4pt data. For
our calculations we use a N f = 2 gauge ensemble on a 403 × 64 lattice, with lattice spacing
a = 0.071fm and pion mass mπ = 288.8MeV.
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1. Introduction

Hadron-hadron collisions are an important subject when discovering new physics at high en-
ergy scales. Therefore the correct description of the underlying event in these interactions is essen-
tial. At energy scales reached in LHC, multi parton interactions (MPIs) are no longer negligible.
The most important MPI processes are double parton scattering (DPS) processes, which are often
naively described by neglecting any interference effects:

dσDPS =
dσSPSdσSPS

Cσeff
, (1.1)

where σSPS is the single parton scattering (SPS) cross section, and σeff is some effective cross sec-
tion, which is related with the hadron size. C = 2 or 1 denotes some symmetry factor [1].
A more fundamental description can be done by introducing so-called double parton distributions
(DPDs), which involve two-operator matrix elements. Our intention is to obtain these matrix ele-
ments from calculations of 4pt-functions on the lattice, starting with the pion at rest. We also want
to check to what extent the "naive factorization" ansatz (1.1) is valid by comparing the convolution
of two form factors with our lattice results for the 4pt-functions.

2. Double Parton Scattering and Double Parton Distributions

For the description of a double parton scattering (DPS) process, it is usually assumed that the
process factorizes into a soft and a hard part. In that case, one can write the cross section as (in the
following lightcone coordinates are used):

dσ

dx1dx̄1dx2dx̄2
= ∑

polarization
flavor

σ1σ2

C

∫
d2y⊥F(xi,y⊥)F(x̄i,y⊥) . (2.1)

A derivation from first principles is given in [2]. In the equation above the σi denote the parton
scattering cross sections. The variable y can be interpreted as the distance between the scattering
partons. F(xi,y⊥) are the so-called collinear double parton distributions (DPDs), which involve
hadronic matrix elements of two lightcone operators. These contain Wilson lines, once we include
higher order contributions.
This is different for Mellin moments of DPDs, where the two parton momentum fractions are
integrated out, which has the consequence that the operators become local and therefore Wilson
lines do not appear anymore. Lattice calculations become more feasible in this case. Explicitly one
finds for the lowest moment:

Mp(y) =
(p+)−1

2

∫
dy−M p(y) (2.2)

M p(y) = 〈h(p)|O f1 f ′1
1 (0)O f2 f ′2

2 (y) |h(p)〉
∣∣∣
y+=0

(2.3)

O f f ′
1,2 (y) = q̄ f (y)Γq f ′(y) , (2.4)

where h(p) denotes a specific hadron with momentum p. Γ is a combination of Dirac matrices,
which depends on the polarization of the quarks taking part on the interaction. We will only discuss
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the vector and axial vector case and furthermore the scalar and pseudoscalar channels, although the
latter two correspond to higher twist contributions.
In the following we will use decompositions of the matrix elements w.r.t. their Lorentz structure
into invariant functions, e.g. :

M p
SS/PP(y) = 2m2ASS/PP(py,y2) (2.5)

T M
p,{µν}

VV (y) =
[
2pµ pν − 1

2 gµν p2]AVV(py,y2)+m2
[
2p{µyν}− 1

2 gµν py
]

BVV(py,y2)

+m4 [2yµyν − 1
2 gµνy2]CVV(py,y2) ,

(2.6)

where T denotes trace subtraction and the {}-notation indicates symmetrization w.r.t. Lorentz
indices.
As mentioned before we intend to check the validity of the factorization assumption (1.1), i.e. the
factorization of a two-operator matrix element into two one-operator matrix elements. It seems
natural that a suitable way is to insert a complete set of intermediate states, assuming that states of
the observed hadron dominate:

〈h(p)|O1O2 |h(p)〉 ≈
∫ d4 p′

(2π)4 〈h(p)|O1 |h(p′)〉〈h(p′)|O2 |h(p)〉δ (p′2−m2) . (2.7)

This ansatz one can apply to lightcone matrix elements as well as to matrix elements of local oper-
ators. We will check both possibilities in Section 4.

3. DPDs from Lattice Studies

π+(0) π+(t)O1(τ,0)

O2(τ,y)

C1

π+(0) π+(t)O1(τ,0)

O2(τ,y)

C2
π+(0) π+(t)O1(τ,0)

O2(τ,y)

A

π+(0) π+(t)O1(τ,0)

O2(τ,y)

S1

π+(0) π+(t)O2(τ,y)

O1(τ,0)S2
π+(0) π+(t)O1(τ,0)

O2(τ,y)

D

Figure 1: Depiction of the six possible independent Wick contractions.

We are able to obtain some information about the matrix elements (2.3) by calculating 4pt-
functions on the lattice. We start with the calculation for the pion with zero momentum taking
only channels containing no derivative terms corresponding to the first Mellin moment. These
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Ensemble β a[fm] κ V mπ [GeV] N(N4pt) Nsm

I 5.29 0.071 0.13632 403×64 0.2888(11) 2025(984) 400

Table 1: Details of the ensemble used for the simulation. N4pt labels the number of configurations, which
are used for our 4pt-calculations. Nsm denotes the number of smearing iterations.

S P V A T
Z 0.4577(18) 0.3538(92) 0.7365(48) 0.76487(64) 0.9141(26)

Zconv 1.3543 1.3543 1 1 0.93313

Table 2: Renormalization factors Z and factors Zconv for the conversion to the MS-scheme. S, P, V, A and T
denote the different operator insertion types.

matrix elements can be obtained by calculating the following ratio, in a limit, where excitations are
suppressed (this is analogous to the calculation of one-operator matrix elements, see e.g. [3]):

M (y) = 2m
C4pt(t,τ,y)

C2pt(t)

∣∣∣∣
0�τ�t

, (3.1)

where C2pt(t) is the usual pion 2pt-function and C4pt(t,τ,y) denotes the 4pt-function:

C4pt(t,τ,y) = 〈Oπ+(t)O1(0,τ)O2(y,τ)O†
π+(0)〉 (3.2)

C2pt(t) = 〈Oπ+(t)O†
π+(0)〉 . (3.3)

O†
π+(t) denotes the pion interpolator, where we use:

O†
π+(t) =

1
V ∑

x
ū(x, t)γ5d(x, t) . (3.4)

For the calculation of the 4pt-function, we have to consider six independent Wick contractions,
which are depicted in Figure 1. The two operator insertions are placed at the same time slice,
which has a time separation τ to the pion source. For the time separation between source and sink
we choose t = 15a. Hence we expect a plateau in the region 6 . τ . 9. For the evaluation of the
4pt-graphs we use an ensemble of N f = 2 gauge configurations (see Table 1, same as ensemble V
in [4]). The gauge fields are smoothed using APE smearing [5]. For our calculations we use the
One-End-Trick incorporating stochastic Z2⊗Z2-sources [6], which are improved by Wuppertal
smearing [7]. We renormalize our results and convert it to the MS-scheme at a scale µ = 2GeV
using the renormalization and conversion factors listed in Table 2 (see [8]).

For the graphs C1, C2, S1 and A we obtain clear non-zero signals, while for the graphs S2 and
D the signals are very noisy. For some matrix elements these results are shown in Figure 2. We are
able to project out the invariant functions appearing in (2.5) and (2.6), which are not shown here
(the C1 data of the scalar and vector channels is shown in Figure 3 compared with the form factor
convolutions). Notice that disconnected graphs are less suppressed in the (pseudo)scalar channel
than in the (axial) vector channel.
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Figure 2: Results for two-operator matrix elements for the channels SS, PP, V0V0 and A0A0. Here the
results of the graphs C1, C2, S1 and A are shown separately.

4. Naive Factorization

Finally we want to check the "naive factorization" into one-operator matrix elements. Apply-
ing (2.7) to matrix elements of lightcone operators yields the following relation (test 1):

AVV/SS(py=0,y2)≈ ηC

π

∫ 1

0
dζ

(
1− ζ

2

)2

(1−ζ )−1
∫ d2r⊥

(2π)2 e−iy⊥·r⊥FV/S(t(ζ ,r⊥)) , (4.1)

where t(ζ ,r⊥) = −(ζ 2m2 + r2
⊥)/(1− ζ ) and ηC = 1 for the scalar case and −1 for the vector

case. On the other hand (2.7) may be inserted in a matrix element of local operators, which can be
brought into the following form (test 2):

〈π+(p)|Ouu
V0
(0)Odd

V0
(y) |π+(p)〉 ≈ −

∫
∞

0

d(r2)

4π2|y|
sin(|y||r|)

(
m+E(r2)

)2

2E(r2)
F2

V(t(r
2))

〈π+(p)|Ouu
S (0)Odd

S (y) |π+(p)〉 ≈
∫

∞

0

d(r2)

4π2|y|
sin(|y||r|)

2E(r2)
F2

S (t(r
2)) ,

(4.2)

where E(r) =
√

r2 +m2 and t(r) = 2m2−2mE(r). Both tests involve the electromagnetic (FV(t))
or scalar form factor (FS(t)) of the pion, respectively. These we obtain from 3pt-functions on the
lattice. Here we consider for the moment only connected graphs and use contributions of momenta,
for which |p| ≤ 2π

L

√
3. Notice that both tests trivially fail for the pseudoscalar or axial vector case,

since the corresponding form factors are exactly zero for symmetry reasons. This is, however, not
the case for two-operator matrix elements (see Section 3).
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# quantity F0 M[GeV] p χ2/DOF
1 Fem 1(fixed) 0.777(12) 1(fixed) 6.010
2 1(fixed) 0.872(16) 1.173(69) 4.400
3 Fscal 2.222(19)GeV 1.314(39) 1(fixed) 7.886
4 2.212(19)GeV 2.023(50) 2(fixed) 9.877

Table 3: Results for the fits on the electromagnetic or scalar pion form factor. All fits take into account error
correlations. The largest contributing value of |t| in the fit is 1.143 GeV2.

To perform the integrals in (4.1) and (4.2), we use the following parametrization of the pion form
factor:

F(t) = F0

(
1+

t
M2

)−p
. (4.3)

The parameters F0 and M may be obtained from a covariant fit on the 3pt data (in the el. m. case
F0 was fixed to 1 according to charge conservation). To get an estimate of our systematic error, we
perform several fits varying the fixed value of p (for the el. m. form factor we also treat p as a free
fit parameter, since the data quality is high enough). The fit results are shown in Table 3.
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Figure 3: Results for the first naive factorization test according to (4.1) for our two fit results. The convolu-
tions are compared with the 4pt data for AVV and ASS.
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Figure 4: Results for the convolution (4.2) compared with the 4pt data of the two-operator matrix elements
for the SS and VV case (logarithmic scale).
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The integrals (4.1) and (4.2) are evaluated numerically and compared to the corresponding
4pt data, where again only connected contributions are used. The results for test 1 are presented
in Figure 3. In the electromagnetic case one may observe a good agreement between the two
curves for large distances, while for distances smaller than the pion wave length clear deviations
are visible. For the scalar case a similar behavior can be found, although the agreement is slightly
worse. This might be corrected by taking into account disconnected contributions, which are less
suppressed in the scalar case.
The results of test 2 plotted in Figure 4 are very different. There is no region in y, where the 3pt
data and the 4pt data show the same behavior. The naive factorization ansatz only predicts the
correct order of magnitude for both, the electromagnetic and the scalar channel.

5. Conclusion

We have investigated 4pt-functions, which are needed for the description of DPS processes,
by performing lattice calculations. The calculations have been done for all 4pt-graphs, where we
obtained good results for at least four graphs. For the remaining two graphs we still have to increase
our statistics. We have checked the validity of the "naive factorization" assumption by performing
two tests, where we have found that this kind of factorization fails for small parton distances, but
also for large distances it might not be a valid assumption.
The efforts, which have been done so far, are planned to be extended to further aspects, like higher
moments and non-zero momenta. Finally we want to investigate other particles, especially the
nucleon, since this is the particle collided at LHC.
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