Nucleon electromagnetic and axial form factors with $N_f=2$ twisted mass fermions at the physical point

Constantia Alexandrou
Department of Physics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus and
Computation-based Science and Technology Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Str., 2121 Nicosia, Cyprus
E-mail: alexand@ucy.ac.cy

Martha Constantinou
Department of Physics, Temple University, Philadelphia, PA
E-mail: marthac@temple.edu

Kyriakos Hadjiyiannakou, Christos Kallidonis, Giannis Koutsou*
Computation-based Science and Technology Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Str., 2121 Nicosia, Cyprus
E-mail: k.hadjiyiannakou@cyi.ac.cy, c.kallidonis@cyi.ac.cy, g.koutsou@cyi.ac.cy

Karl Jansen
NIC, DESY, Platanenallee 6, D-15738 Zeuthen, Germany
E-mail: karl.jansen@desy.de

Konstantin Ottnad
Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Mainz, Germany
E-mail: kottnad@uni-mainz.de

Alejandro Vaquero
INFN Sezione di Milano-Bicocca, Milano, Italy
E-mail: alexvaq@physics.utah.edu

We present results for the nucleon electromagnetic and axial form factors using an $N_f=2$ twisted mass fermion ensemble with pion mass of about 131 MeV. We use multiple sink-source separations to identify excited state contamination. Dipole masses for the momentum dependence of the form factors are extracted and compared to experiment, as is the nucleon magnetic moment and charge and magnetic radii.

34th annual International Symposium on Lattice Field Theory
24-30 July 2016
University of Southampton, UK
1. Introduction

Form factors of the nucleon are fundamental probes of its structure. The electromagnetic form factors are related to the nucleon magnetic moment, its electric and magnetic radii. Axial form factors probe chiral symmetry and test partial conservation of the axial current (PCAC), having been studied in chiral effective theories.

Both electromagnetic and axial form factors have been extensively studied in lattice QCD. Recent experimental results, in combination with availability of simulations with physical quark masses on the lattice, have increased interest in an \textit{ab initio} calculation of these form factors. These include tension between the value obtained for the proton radius between electron scattering \cite{detmold2015} and hydrogen spectroscopy \cite{acharya2014} as well as with recent measurements of muonic deuterium spectroscopy \cite{langenecker2015}. Furthermore recent re-analyses of neutrino scattering data \cite{deandrea2010, langenecker2008} report large systematics in the determination of the axial dipole mass M_A. In this contribution, we calculate the axial and electromagnetic form factors of the nucleon on an ensemble of twisted mass fermion configurations with clover improvement and two degenerate light quarks ($N_f = 2$) tuned to reproduce a pion mass of about 131 MeV \cite{braun2015}. We use multiple sink-source separations and $\mathcal{O}(10^5)$ statistics to evaluate excited state effects in these quantities.

2. Setup and lattice parameters

2.1 Axial and Electromagnetic form factors

Form factors are extracted from nucleon matrix elements:

$$\langle N(p',s')|\mathcal{O}^X_{\mu}\rangle|N(p,s)\rangle = \sqrt{\frac{m_N^2}{E_N(p')E_N(p)}} \bar{u}_N(p',s')\Lambda^X_{\mu}(q^2)u_N(p,s)$$

with $N(p,s)$ a nucleon state of momentum p and spin s, $E_N(p)$ its energy and m_N its mass, $q = p' - p$, the momentum transfer from initial (p) to final (p') momentum, u_N a nucleon spinor and \mathcal{O}^X either the axial ($X = A$) or vector ($X = V$) current. For the case of axial form factors, we use the axial current:

$$\mathcal{O}^A_{\mu} = \gamma_\mu - i\gamma_5 \gamma_\nu \sigma^\nu_{\lambda\sigma} \gamma_\sigma$$

with ψ the nucleon field, γ_μ the gamma matrices, and $\sigma_{\lambda\sigma}$ the Pauli matrices. For the electromagnetic form factors we use the isovector, symmetrized lattice conserved vector current

$$\mathcal{O}^V_{\mu} = \frac{1}{2}[j_\mu(x) + j_\mu(x - \hat{\mu})]$$

where $j_\mu(x)$ the Wilson conserved current. Use of the isovector current means that disconnected contributions cancel. Furthermore, use of the conserved electromagnetic current means no renormalization of the vector operator is required. For the axial form factors we use $Z_A = 0.7910(4)(5)$ \cite{braun2010}. The matrix element of the axial current yields the axial G_A and induced pseudo-scalar G_P form factors, while the vector current yields the Dirac F_1 and Pauli F_2 form factors:

$$\Lambda^A_{\mu}(q^2) = \frac{i}{2}\gamma_\mu G_A(q^2) + \frac{q_\mu q_\nu}{2m_N} G_P(q^2), \quad \Lambda^V_{\mu}(q^2) = \gamma_\mu F_1(q^2) + \frac{i\sigma_{\mu\nu}q^\nu}{2m_N} F_2(q^2). \quad (2.1)$$

The Dirac and Pauli form factors can also be expressed in terms of the nucleon electric G_E and magnetic G_M Sachs form factors via $G_E(q^2) = F_1(q^2) + \frac{q^2}{(2m_N)^2} F_2(q^2)$ and $G_M(q^2) = F_1(q^2) + F_2(q^2).$
2.2 Lattice extraction of form factors

On the lattice, extraction of matrix elements requires calculating a three-point correlation function. We use sequential inversions through the sink fixing the sink momentum \(\vec{p}' \) to zero, which constrains \(\vec{p} = -\vec{q} \). We form a ratio of three- to two-point functions which, after taking the large time limit, cancel unknown overlaps and energy exponentials:

\[
R_\mu(\Gamma; \vec{q}; t_s) \equiv \frac{\sum_{t_{\text{ins}}} R_\mu(\vec{q}; t_s; t_{\text{ins}}) \Gamma_{t_{\text{ins}} \rightarrow \Gamma} \Pi_\mu(\vec{q}; \vec{q}),}{\sum_{t_{\text{ins}}} \Pi_\mu(\vec{q}; \vec{q})},
\]

where \(R_\mu \) is the ratio of three- to two-point functions as defined in Ref. [8], \(t_s (t_{\text{ins}}) \) is the sink (insertion) time assuming the source is at the origin, and \(\Gamma \) is the sink polarization.

In what follows we will use two methods to extract \(\Pi_\mu \) from lattice data: i) in the standard plateau method, we fit the \(t_{\text{ins}} \) dependence of \(\Pi_\mu \) to a constant for multiple \(t_s \) values observing the dependence with \(t_s \), as shown for \(G_E \) in the left panel of Fig. 1. Excited states are suppressed when our result does not change with \(t_s \). ii) in the summation method, we calculate:

\[
\sum_{t_{\text{ins}}} R_\mu(\vec{q}; t_s; t_{\text{ins}}) \Gamma_{t_{\text{ins}} \rightarrow \Gamma} \Pi_\mu(\vec{q}; \vec{q}) t_s + C \text{ and carry out a two-parameter fit for obtaining the slope, as in the right panel of Fig. 1.}
\]

![Figure 1: Example fits for \(G_E \), left for the plateau method for three lattice momenta, and right for the summation method for the first five lattice momenta. On the left, with the grey bands, we also show the result of the summation method.](image)

Having \(\Pi_\mu(\Gamma; \vec{q}) \), different combinations of current insertion directions (\(\mu \)) and nucleon polarizations determined by \(\Gamma \) yield different form factors. Using \(\Pi^V \) to denote electromagnetic and \(\Pi^A \) for axial matrix elements, we have:

\[
\begin{align*}
\Pi^V(\Gamma_0; \vec{q}) &= \mathcal{C} \frac{E_N + m_N}{2m_N} G_E(Q^2), \\
\Pi^V(\Gamma_k; \vec{q}) &= \mathcal{C} \frac{q_k}{2m_N} G_E(Q^2), \\
\Pi^A(\Gamma_k; \vec{q}) &= \frac{i\mathcal{C}}{2m_N} \left[q_k q_i - \frac{2m_N}{L_N(E_N + m_N)} \right] G_A(Q^2)
\end{align*}
\]

where \(Q^2 = -q^2 \), \(\mathcal{C} = \sqrt{\frac{2m_N}{L_N(E_N + m_N)}} \), the unpolarized projector: \(\Gamma_0 = \frac{1\pm\gamma_5}{2} \), the polarized projector: \(\Gamma_k = i\gamma_k \gamma_0 \Gamma_0 \), and \(i, k = 1, 2, 3 \).

2.3 Lattice setup

We use a lattice with volume \(48^3 \times 96 \) and lattice spacing determined at \(a \approx 0.093 \text{ fm} \). The parameters of the calculation are summarized in Table 1. This setup allows calculation of \(G_E \) on all five sink-source separations and of \(G_M, G_A \) and \(G_P \) on the three smallest. \(G_E \) and \(G_M \) can be extracted directly via Eq. (2.2) since they depend on different sink projectors. \(G_A \) and \(G_P \)
are both extracted from the last expression of Eq. (2.2). We separate the two form factors via an over-constrained fit, solving the resulting eigenvalue problem via singular value decomposition, as explained in Ref. [10].

3. Results

3.1 Axial form factors

The axial form factors are shown in Fig. 2. For G_A we see values increasing at low Q^2 as the sink-source separation increases, while at larger momenta we see a decreasing trend. We fit all three sink-source separations, and the summation method, to a dipole form: $G_A(Q^2) = \frac{g_A}{(1 + Q^2/M_A^2)^2}$, allowing both the axial charge g_A and the axial mass M_A to vary. We observe g_A approaching its experimental value with increasing sink-source separation. More details on this calculation of g_A
can be found in Ref. [13] in these proceedings. \(M_A \) is found consistent within errors of a recent experimental determination [4] shown with the dashed line in the central panel of Fig. 2. We note that our values of \(M_A \) are also consistent within the wide error of a recent reanalysis of experimental data, not shown in Fig. 2, which yields \(M_A = 1.01(24) \) GeV [5].

The induced pseudo-scalar form factor \(G_P \) exhibits similar excited-state dependence at low \(Q^2 \). Assuming a pion-pole motivates the form: \(G_P(Q^2) = G_A(Q^2)C/(1 + Q^2/m_p^2) \) to which we fit to using a dipole form for \(G_A \) thus requiring only \(C \) to vary. We obtain \(\sqrt{C}/2 = 5.9(2) \) to be compared to the phenomenological expectation \(\sqrt{C}/2 = m_N/m_\pi = 7.16(4) \) [10].

3.2 Electromagnetic form factors

The isovector electromagnetic Sachs form factors are shown in Fig. 3, where for \(G_E \) two additional \(t_s \) values are available. For \(G_E \) we see a tendency towards the experimental results as \(t_s \) increases. The same is not observed for \(G_M \) which underestimates the low-\(Q^2 \) experimental values and which decreases with increasing \(t_s \).

![Figure 3: Isovector electric (left) and magnetic (right) Sachs form factors. For \(G_E \) we show with yellow triangles and magenta pentagons \(t_s \approx 1.5 \) and 1.7 fm respectively. Asterisks denote the summation method. The solid line and band denotes fits to a dipole form as explained in the text. The dashed line is the experimental parameterization.](image)

The electric and magnetic radii are related to the slope of the form factors at \(Q^2 = 0 \), namely: \(\langle r_i^2 \rangle = -\frac{6}{G_i(0)} \partial G_i(Q^2)/\partial Q^2 \), \(i = E, M \). We fit all sink-source separations and the summation method to a dipole form \(G_i(Q^2) = G_i(0)/(1 + Q^2/m_i^2) \) with \(\langle r_i^2 \rangle = \frac{12}{m_i^2} \). For \(G_E \) we fix \(G_E(0) = 1 \) while for \(G_M \) we allow \(G_M(0) \) to vary. The results are shown in Fig. 4 where for both electric and magnetic radii we see an increasing trend towards the experimentally determined values as \(t_s \) increases, while \(G_M(0) \) shows mild dependence on \(t_s \).

Our results for the isovector electric and magnetic charge radii are compared to those of other recent lattice calculations in Fig. 5. We see that for both radii lattice results agree within errors and are within at most 2-\(\sigma \) to the experimental values. With further improvement on systematic uncertainties and with increased statistics, contacting experiment is within reach for these quantities.
4. Summary and conclusions

The isovector axial and electromagnetic form factors of the nucleon have been calculated on a lattice with physical pion mass at multiple sink-source separations up to ∼1.7 fm and for O(10^5) statistics. We find that excited states increase the axial mass and at separations beyond 1.3 fm our result agrees with experimental measurements.

The electric and magnetic charge radii show similar behavior, approaching the experimental
values with increasing t_s. For $G_M(0)$, the value at $Q^2 = 0$ is underestimated with mild excited state dependence. Calculations at a larger volume, with access to finer momenta, are being carried out to asses the effect on $G_M(0)$.

Recent methods for fitting form factors with no model assumption of the their Q^2 dependence allow for further assessment of systematic uncertainties. In the right panel of Fig. 5 we show the result of applying the position space method of Ref. [17], originally applied for $G_M(0)$, to obtain $\langle r_E^2 \rangle$ at $t_s = 1.7$ fm. At all separations we obtain results for $\langle r_E^2 \rangle$ consistent with what is obtained by the dipole fits shown in Fig. 4. Such methods can benefit from finer momenta using larger lattice volumes, as well as from reduced errors at larger Q^2 using appropriate momentum-dependent smearing as in Ref. [18], both avenues which are currently being explored.

Acknowledgments: Results were obtained using Jureca, via NIC allocation ECY00, HazelHen at HLRS and SuperMUC at LRZ via Gauss allocations with ids 44066 and 10862 and Piz Daint at CSCS via projects with ids s540 and s625. We thank the staff of these centers for access to the computational resources and for their support.

References