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1. Introduction

Nucleon form factors are good probes to investigate the internal structure of the nucleon. Much
effort has been devoted to calculate them with lattice QCD since 1980’s. Unfortunately, the current
situation is that we are still struggling for reproducing the well-established experimental results,
e.g., the axial vector coupling and the electric charge radius. This means that we have not yet
achieved proper treatment of a single hadron in lattice QCD calculation. In this report we present
the results of the nucleon form factors measured on an (8.1fm)4 lattice at almost the physical
point in 2+1 flavor QCD. Thanks to the large spatial volume we can access to the small momentum
transfer region up to 152 MeV. The momentum dependence of the nucleon form factors is examined
based on the dipole form, the simple Taylor expansion and the z-expansion. We perform a detailed
comparison between three analyses.

2. Simulation details

We employ the 2+1 flavor QCD gauge configurations generated with the stout-smeared O(a)-
improved Wilson-clover quark action and the Iwasaki gauge action[1] on a 964 lattice at β =
1.82[2]. The value of the improvement coefficient is nonperturbatively determined as cSW = 1.11
with the Schrödinger functional scheme[3]. The lattice spacing is about 0.085 fm so that the phys-
ical lattice size amounts to (8.1 fm)4. The pion mass at the simulation point is about 145 MeV,
which is fairly close to the physical point. The results for the hadron spectrum and other physical
quantities are already presented in Ref. [2].

The nucleon form factors are extracted from the three-point functions consisting of the nucleon
source and sink operators and the local vector or axial vector currents:

CP
Vα (t, p⃗′, p⃗) =

1
4

Tr
{
P〈N(tsink, p⃗′)Vα(t, q⃗)N̄(tsrc,−p⃗)〉

}
, (2.1)

CP
Aα (t, p⃗′, p⃗) =

1
4

Tr
{
P〈N(tsink, p⃗′)Aα(t, q⃗)N̄(tsrc,−p⃗)〉

}
, (2.2)

with P appropriate projection operators to extract the form factors and q⃗ = p⃗ − p⃗′ the three-
dimensional momentum transfer. We consider only the rest frame of the final state with p⃗′ = 0⃗,
which leads to Q2 = 2MN(EN (⃗q)−MN) for the squared four-momentum transfer. We calculate only
the connected diagrams to concentrate on the isovector part of the nucleon form factors. The three
point functions are constructed with the sequential source method. The currents are moved between
the nucleon source and sink operators, both of which are exponentially smeared in the Coulomb
gauge, separated by 15 time slices. We employ 9 cases of momentum transfer q⃗ = π/48× n⃗ with
|⃗n|2 ≤ 9 in Table 1. The minimum momentum transfer is about 152 MeV, which is so small as the
pion mass. A difference between the results for Q8 and Q9 cases could probe the possible lattice
discretization error. All the results presented in this report are preliminarily obtained with 146 con-
figurations performing 64 measurements of the three-point functions on each configuration. We are
now increasing the statistics.
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label Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
n⃗ (1,0,0) (1,1,0) (1,1,1) (2,0,0) (2,1,0) (2,1,1) (2,2,0) (3,0,0) (2,2,1)
|⃗n|2 1 2 3 4 5 6 8 9 9

degeneracy 6 12 8 6 24 24 12 6 24

Table 1: Choices for momentum transfer q⃗ = π/48× n⃗. The bottom raw denote the degeneracy of n⃗ due to
the permutation symmetry between ±x, ±y, ±z directions.

3. Nucleon two-point functions

Let us first investigate the nucleon rest mass and the dispersion relation, which are obtained
from the nucleon two-point functions. In Fig. 1 we plot the nucleon effective mass for two cases:
Smear-local denotes the nucleon two-point function with the smeared source and the local sink
operators and smear-smear for the smeared source and the smeared sink ones. We observe that the
smear-local case shows good plateau for t ≥ 6. On the other hand, the signal becomes noisier for
the smear-smear case. Figure 2 shows a check of the dispersion relation for the nucleon with the
choice of 9 cases of spatial momenta in Table 1. We find that the relativistic continuum dispersion
relation is well satisfied up to |p⃗|2 = (π/48)2 ×9.
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Figure 1: Effective mass for the nucleon.
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Figure 2: Dispersion relation for the nu-
cleon. p2

con = {EN (⃗n2)}2 −{EN (⃗02)}2 vs. p2
lat =

(π/48)2 × n⃗2.

4. Nucleon three-point function with zero momentum transfer

We can evaluate the renormalization factor of the local vector current ZV and the axial charge
gA using the three-point functions with zero momentum transfer q⃗ = 0⃗. The choice of P = (1 +
γ4)/2 in Eq. (2.1) provides us the Dirac form factor F1(Q2 = 0) = 1/ZV . Figure 3 plots the result
of ZV , which shows a good plateau in the time region of 2 ≤ t ≤ 14. The fit result with one-sigma
error band denoted by three solid lines shows a good consistency with the value of ZV (red line)
obtained by the Schrödinger functional (SF) scheme at the vanishing PCAC quark mass[4]. We
also draw the value of ZA with the SF scheme for comparison in the same figure. The difference
between ZV and ZA is 1.5%, which indicates a fairly small chiral symmetry breaking effects.
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The axial charge gA plotted in Fig. 4 is extracted by choosing P = (1+γ4)γ5γ3/2 in Eq. (2.2).
The local axial vector current is renormalized with the value of ZA obtained with the SF scheme
shown in Fig. 3. The value of gA is obtained from the ratio of the nucleon three-point function
divided by the nucleon two-point function. We may have two choices for the denominator: One is
the measured value of 〈N(t)N̄(0)〉 and the other is the single exponential form Aexp(−mNt) with
A and mN the fit results of 〈N(t)N̄(0)〉. We find that the latter case shows a better agreement with
the experimental value. The difference between two cases, which should be a systematic error in
this calculation, is expected to diminish as the statistics is increased.
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Figure 3: Renormalization factor of the local vector
current determined by ZV = 1/F1(0).
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Figure 4: Renormalized axial charge with ZA =
0.9650(68)(95) in SF scheme.

5. Nucleon form factors

5.1 Q2 dependence of vector form factors

The Dirac and Pauli form factors F1(Q2) and F2(Q2) are related to the electric and magnetic
Sachs form factors as

GE(Q2) = F1(Q2)− Q2

4M2
N

F2(Q2), (5.1)

GM(Q2) = F1(Q2)+F2(Q2). (5.2)

The isovector form factor is given by a difference between the proton and neutron form factors as
Gv

E/M = Gp
E/M(Q2)−Gn

E/M(Q2)[5]. The Q2 dependence of GE and GM are plotted in Figs. 5 and
6, respectively, together with the experimental curves. We observe that GE shows good agreement
with experimental curve, especially, for low Q2. This feature suggests that our results successfully
reproduce experimental value for the electric mean squared radius 〈r2

E〉 which is defined by

〈r2
E〉 = −6

dGE

dQ2

∣∣∣∣
Q2=0

. (5.3)

On the other hand, noisier signals for GM would hinder us from the precise determination of the
magnetic mean squared radius 〈r2

M〉 .
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Figure 5: Q2 dependence of the isovector electric
form factor GE . The experimental curve is given by
a dipole form with the root mean squared radius of
0.939(5) fm.
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Figure 6: Q2 dependence of the isovector magnetic
form factor GM . The experimental curve is given by
a dipole form with the root mean squared radius of
0.862(14) fm.

5.2 Analysis with z-expansion

We first make conventional analyses of the Q2 dependence of the electric form factors based
on the dipole and quadratic forms. Figure 7 presents the fit results for GE(Q2) employing the
following fit functions:

Gd
E(Q2) =

a0

(1+a1Q2)2 , (5.4)

Gq
E(Q2) = d0 +d2Q2 +d4Q4, (5.5)

both of which describe all the data reasonably. The electric root mean squared radius is determined

to be
√

〈r2
E〉=

√
−12a1 = 0.906(71) fm from the dipole fit and

√
〈r2

E〉=
√

−6d2/d0 = 0.917(68)
fm from the quadratic fit. These values are consistent with the experimental results: 0.9391(58) fm
from ep scattering and 0.9073(13) fm from µ-H atom spectroscopy[6].
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Figure 7: Results for dipole and quadratic fits of GE

using all 10 data points.
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Figure 8: Results for z-expansion fit of GE with
t0 = 0 and kmax = 8 using all 10 data points.

The dipole and quadratic fits give reasonable values for the electric root mean squared radius.
However, it is well known that they have clear defects: The dipole fit is model-dependent and
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the Taylor expansion in terms of Q2 may be valid only for |Q2| < tcut = 4m2
π . A possible way to

overcome these defects is the use of the z-expansion: GE(z) = ∑kmax
k=0 ckz(Q2)k, where z(Q2) is a

conformal mapping of the cut plane Q2 < −4m2
π to the unit circle |z| = 1 with

z(Q2) =

√
tcut +Q2 −

√
tcut − t0√

tcut +Q2 +
√

tcut − t0
(5.6)

with tcut = 4m2
π [7]. There are three major advantages in this method. Firstly, we can perform

a model independent analysis, which is in contrast to the dipole fit. Secondly, analyticity is as-
sured within the unit circle. Thirdly, the constraint ∑k ||ck|| < ∞ allows us to expect good con-
vergence for the coefficient ck. Figure 8 shows the fit results for GE(Q2) with kmax = 8 and
t0 = 0 in the z-expansion. It is clear that the curvature becomes smaller in z variable than Q2

variable. We investigate the convergence behavior of the coefficients both in the Taylor expansion
and the z-expansion. Figure 9 plots the magnitude of the coefficient |ck| for the Taylor expan-
sion: Q(kmax) ≡ ∑kmax

k=0 ck
(
Q2/tcut

)k with the choices of kmax = 2, · · · ,8. Although |c0| and |c1| give
dominant contributions, |cn+1/cn| < 1 is not necessarily satisfied for n ≥ 2. In Fig. 10 we find
different convergence behavior for the z-expansion: z(kmax) ≡ ∑kmax

k=0 ckzk with kmax = 2, · · · ,8. Co-
efficients are fairly stable for kmax ≤ 4 and |cn+1/cn| < 1 is always satisfied for n ≥ 3. The electric

root mean squared radius is determined to be
√

〈r2
E〉 =

√
−6(c1/c0)/(4tcut) = 0.950(123) fm in

the z-expansion with t0 = 0 and kmax = 8. This value is consistent with the experimental values
from ep scattering and µ-H atom spectroscopy, though further statistics is required to resolve the
experimental puzzle on the proton size.
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Figure 9: Coefficients of simple Taylor expansion
for the electric form factor GE .
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Figure 10: Coefficients of z-expansion for the elec-
tric form factor GE .

Finally we briefly discuss the analyses of the magnetic form factor GM(Q2). We show the fit
results of GM(Q2) with the dipole and quadratic functions in Fig. 11 and those with the z-expansion
(t0 = 0) in Fig. 12. All the fits reasonably describe the 9 data points with χ2/dof < 1. We have
checked that the convergence properties are quite similar to the case of the electric form factor both
for the Taylor expansion and the z-expansion. The values of the magnetic moment are 3.52(42)
for the dipole fit, 3.71(46) for the quadratic fit, and 4.24(70) for the z-expansion with t0 = 0 and
kmax = 7. We find that the z-expansion gives a consistent result with the experimental value of
4.70589.
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Figure 11: Results for dipole and quadratic fits of
GM using all 9 data points.
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Figure 12: Results for z-expansion fit of GM with
t0 = 0 and kmax = 7 using all 9 data points.
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