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Lattice QCD calculations of radiative transitions between hadrons have in the past been limited to
processes of hadrons stable under the strong interaction. Recently developed methods for 1→ 2
transition matrix elements in a finite volume now enable the determination of radiative decay rates
of strongly unstable particles. Our lattice QCD study focuses on the process ππ→ πγ∗, where the
ρ meson is present as an enhancement in the cross-section. We use 2+1 flavors of clover fermions
at a pion mass of approximately 320 MeV and a lattice size of approximately 3.6 fm. The required
2-point and 3-point correlation functions are constructed from a set of forward, sequential and
stochastic light quark propagators. In addition to determining the ρ meson resonance parameters
via the Lüscher method, the scattering phase shift is used in conjunction with the 1→ 2 transition
matrix element formalism of Briceño, Hansen and Walker-Loud [1] to compute the ππ → πγ∗

amplitude at several values of the momentum transfer and ππ invariant mass.
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1. Introduction

Lattice QCD studies in the past have focused on calculations of hadronic masses within the
single-hadron approach, resonance masses and their corresponding strong decay widths via the
Lüscher method [2], as well as form factors and matrix elements involving transitions between
hadrons stable under the strong interaction. There were also some exploratory calculations of
matrix elements involving unstable hadrons, where the effects of the strong decay were neglected
[3, 4], leading to uncontrolled finite volume effects.

The effect of the multi-hadron state for the K→ ππ decay was first described by Lellouch and
Lüscher [5] and was extended to all elastic states below the inelastic threshold [6]. The Lellouch-
Lüscher factor, which encodes the finite volume effects that affect the transition matrix elements,
has been generalized to describe also hadrons in a moving frame [7]. The inclusion of multiple
decay channel modes of the unstable hadron have been addressed in [8] and a specific setup to
calculate the ∆→ Nγ decay was proposed in [9]. A recent paper by Briceño, Hansen and Walker-
Loud [1] was the first to derive the effects in quantum field theory as well as put forward a full
general setup for 1→ 2 transition matrix elements involving an arbitrary number of coupled two-
hadron channels. The first study employing the formalism of Briceño, Hansen and Walker-Loud
(BHWL) was performed by the Hadron Spectrum collaboration only recently [10, 11], for the
ππ(→ ρ)→ πγ transition amplitude. In our work we study the same channel, but use different
methods to construct the correlation functions.

2. On the Briceño-Hansen-Walker-Loud formalism

The finite volume effects of the transition matrix element we consider in this work are de-
scribed by

|FIV (ν ;JQED
µ ;q2,sππ)|2

|〈n,Λ,ν ,~pππ |JQED
µ |π,~pπ〉|2

=
32πEπ

√
sππ

k

[∂δ1(
√

sππ)

∂Eππ

+
∂φ

~pππ

1 (k)
∂Eππ

]
(2.1)

where φ
~pππ

1 (k) comes from the quantization condition of the Lüscher method, cotδ1+cotφ
~pππ

1 (k) =
0, k is related to

√
sππ via

√
sππ = 2

√
m2

π + k2, δ1 is the phase shift that describes the ππ resonant
scattering, 〈n,Λ,ν ,~pππ |JQED

µ |π,~pπ〉 is the finite volume matrix element and FIV is the infinite vol-
ume matrix element, which can be further reduced by taking into account the Lorentz symmetry.
Eππ is the energy of the given state n in the irrep Λ as determined by the spectrum study.

The factor on the right-hand-side is referred to as the Lellouch-Lüscher factor [5] and repre-
sents the mapping from the finite volume matrix element to the infinite volume transition ampli-
tude. The basic idea of the BHWL formalism is to calculate the Lellouch-Lüscher factor using
prior knowledge and then perform the mapping from the finite volume to the infinite volume. This
is done not only for the ground state, but for all relevant states in the lattice irrep in which the
unstable hadron, in our case the ρ , is present.

Thus, an essential part of the BHWL formalism is the spectroscopy study, where the phase shift
in a given channel (in our case elastic ππ scattering) is calculated with the Lüscher method and
its generalizations [2]. This provides us with two quantities - the phase shift needed to determine
the mapping, and the specific linear combinations of interpolating operators that create a well
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defined specific state. These combinations yield the optimized correlators [12], and give us access
to the matrix elements at several different values of the ππ invariant mass. A simple outline of the
procedure we employ to determine the infinite volume amplitude looks like:

1) perform a lattice calculation of ππ p-wave resonant scattering in the multi-hadron approach
and determine the phase shift with the Lüscher method

2) determine the parameters of the Breit-Wigner phase shift form and calculate the derivative of
the phase shift with respect to the two-particle energy for the given Breit-Wigner parametriza-
tion

3) calculate the ππ → πγ three point functions involving both q̄Γiq and ππ interpolating oper-
ators and utilize the information from 1) to project them to definite states

4) use the derivative of the phase shift from 2) combined with the function ∂φ
~pππ

1 (k)
∂Eππ

to determine
the mapping from the finite volume matrix elements to the infinite volume amplitude.

3. Construction of the correlation functions

To calculate the 2-point and 3-point correlation functions we adapted a method using a com-
bination of forward, sequential, and stochastic propagators. The forward quark propagator S f from
the initial point (~xi, ti) to the final point (~x f , t f ) is the inverse of the Dirac operator D:

(~xf , tf) (~xi , ti)Sf
S f (~x f , t f ;~xi, ti)ab

αβ
= D−1(~x, t f ;~xi, ti)ab

αβ
, (3.1)

where α,β are spin indices and a,b are color indices. The sequential propagator describes a quark
flow through a vertex of a given flavor and Lorentz structure. It is obtained by using the product
of a forward propagator and the gamma matrix in the vertex as a the source for the solver. It
requires 12 inversions (one for each spin and color index) for each distinct sequential source time
tseq, momentum ~p and and Γ matrix:

(~xf , tf) (~xi , ti)Sseq

Γ(~p)

Sseq(~x f , t f ;~xi, ti; tseq,~p,Γ)

= ∑
~xseq

D−1(~x f , t f ;~xseq, tseq)Γei~p~xseq S f (~xseq, tseq;~xi, ti) . (3.2)

The stochastic timeslice-to-all propagator is defined as by the inversion of the Dirac matrix on a
stochastic timeslice momentum source:

(~xf , tf) (~pi , ti)Sst

φ(ti,~p) = D−1
ξ (ti,~p) (3.3)

ξ (ti,~pi)t,~x,β ,b = ∑
~y

δt,ti ei~pi~y ξ (ti)~y,β ,b .

This technique provides an efficient way to evaluate the partially disconnected diagrams involved
in typical multi-hadron studies with reasonable cost. In addition to time-dilution of the stochastic
momentum source, we also apply spin-dilution to make use of the efficient one-end-trick in our
contractions:

ξ (ti,~pi,α)t,~x,β ,b = ∑
~y

δt,ti δα,β ei~pi~y ξ (ti)~y,b . (3.4)
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To enhance the overlap to the low lying states contributing to a correlator we apply source and sink
smearing to the propagator types listed above by replacing SX →W SX W †, where W denotes the
Wuppertal-smearing operator [13] and X ∈ { f , seq, st}.

To determine the ππ p-wave phase shift we calculate the 2-point correlation functions in the
multi-hadron approach, within which we build a correlation matrix Ci j(t) = 〈Oi(t)O

†
j(0)〉 from two

types of interpolating operators Oq̄q and Oππ :

Oq̄q
ν ∼ q̄Γνq(~pππ),

Oππ
ν ∼ π

+(~p1)π
−(~p2), (3.5)

where ~pππ = ~p1 +~p2 and Γν = {γν ,γ4γν}. We project these correlation functions to definite ππ

momenta, where ~pππ = 2π

L (0,0,0), 2π

L (0,0,1), 2π

L (0,1,1) and their permutations. We combine the
interpolators in such a manner that each is in a well defined irreducible representation, which are
constructed by the projection operator defined in Eq. (13) of [14].

Schematically, the Wick diagrams involved in constructing the correlation matrix are presented
in Figure 1 and are built using the propagators defined above.

q̄q ππ

q̄q a)

d̄Γνu d̄Γνu

f

f

b)

d̄γ5u

ūγ5u

d̄Γνu

f

f

seq

ππ c)

d̄γ5u

ūγ5u

d̄Γνu

d)

d̄γ5u

ūγ5u

d̄γ5u

ūγ5u

f
f

st st

e)

d̄γ5u

ūγ5u

d̄γ5u

ūγ5u

f

fst

seq

Figure 1: The correlation matrix Ci j for the 2-point functions, which involves 4 types of diagrams that are
built from the propagators defined in Section 3.

The spectrum in each of the momentum frames and irreps is obtained by solving the general-
ized eigenvalue problem (for details on GEVP see [15] and [16]) C(t)un(t) = λn(t, t0)C(t0)un(t).
We use t0 = 2 and checked that for t0 up to 6 the spectrum is consistent with our choice.

The (I)JPC = (1)1−− elastic ππ scattering phase shift is obtained using the Lüscher method
[2] as well as its generalizations [17, 18]. The relevant equations for the mapping from the finite
volume to the infinite volume are listed in [19], and a comparison of previous studies can be found
in [20].

To determine the 3-point correlation functions C3 that project to a definite state in the irre-
ducible representation, we calculate the 3-point functions Ci

3:

Ci
3(tJ, ti, t f ) = ∑

n∈Λ,~pππ

〈0|Oi|n,Λ,ν〉〈n,Λ,ν , |Jµ

QED|π,~pπ〉〈π|Oπ |0〉
e−En(t f−tJ)e−Eπ (tJ−ti)

2EπEn
, (3.6)

where tJ is the current insertion timeslice, ti is the pion creation timeslice and t f is the ππ chan-
nel annihilation timeslice. JQED

µ is the QED current, JQED
µ = ZV (

2
3 ūγµu− 1

3 d̄γµd) and ZV =

0.79700(24). The index i runs over the interpolators used in the 2-point function part and includes

3
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a)

JQED

d̄Γνud̄γ5u

f

f st

b)

JQED

d̄Γνud̄γ5u

f
f

st

c)

JQED

d̄γ5u

ūγ5ud̄γ5u

seq f

f

st

d)

JQED
ūγ5u

d̄γ5u

d̄γ5u

f

f

st
seq

e)

JQED
ūγ5u

d̄γ5u

d̄γ5u

f

f

st

st

f)

JQED
ūγ5u

d̄γ5u

d̄γ5u

f

f
st

st

Figure 2: Wick diagrams for the 3-point correlation functions. We have not yet included the disconnected
diagrams in b) and c) to the correlation function.

both the ππ and q̄q interpolators to describe the ρ/ππ state. All the relevant 3-point functions are
shown in Fig. 2, however we have not yet included the disconnected terms in Fig. 2b) and c).

The projection to the definite state is done by using the idea of the optimized correlator [12,
21, 22] to construct combination of the Ci

3 that will have the best possible overlap to a given state,
C3(n, tJ, ti, t f ) = ui

nCi
3(tJ, ti, t f ). To determine the matrix elements 〈n,Λ,ν ,~pππ |JQED

µ |π,~pπ〉, where
n marks the state in the irrep Λ with polarization ν and momentum ~pππ , from the 3-point functions,
we use a ratio similar to those defined in [23]:

R(n, tJ, ti, t f ) =

C3(n, tJ, ti, t f )C∗3(n, t f + ti− tJ, ti, t f )

C(n)
2 (t f , ti)C

(π)
2 (t f , ti)

→ |〈n,Λ,ν ,~pππ |Jµ

QED|π,~pπ〉|2. (3.7)

We determine the amplitude |FIV (ν ;JQED
µ ;q2,sππ)| for the ππ → πγ transition by mapping

the finite volume matrix elements to the infinite volume matrix elements using Eq. (2.1) and then
performing the Lorentz invariant decomposition:

FIV (ν ;JQED
µ ;q2,sππ) = fππ,π(q2,sππ)εµναβ (pππ)α(pπ)β , (3.8)

where q = pπ − pππ and fππ,π is the Lorentz invariant amplitude.

4. Preliminary results and conclusions

Our results are obtained on a 323× 96 lattice gauge ensemble with N f = 2+ 1 dynamical
clover-Wilson fermions, which is described in detail in ref. [24]. The light quark mass corresponds
to a pion mass of 317(2) MeV with a lattice spacing of a = 0.11403(77) fm. The presented results
are obtained from a subset of Ncon f = 367 configurations available on this lattice.

The (I)JPC = (1)1−− elastic ππ scattering phase shift is shown in Fig. 3. By fitting a Breit-
Wigner form to the phase shift we obtain the following parameters for the ρ resonance, which is
present in this channel:

tanδ1(
√

sππ) =

√
sππ Γ(

√
sππ)

m2
ρ − sππ

, Γ(
√

sππ) =
g2

ρππ

6π

k3

sππ

(4.1)

mρ = 798.2(5.3) MeV gρππ = 6.46(53) (4.2)
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Figure 3: The ππ scattering phase shift as calculated on our gauge ensemble with mπ = 317(2) MeV.
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Figure 4: The ππ→ πγ infinite volume amplitude as determined in the BHWL formalism using t f −ti = 10.
It exhibits an enhancement for

√
sππ in the vicinity of the ρ resonance.

The ππ→ πγ infinite volume amplitude is shown in Fig. 4. It exhibits the basic expected fea-
tures, including an amplification near

√
sππ ≈ mρ . Our results are comparable with the results in a

previous study by the Hadron Spectrum collaboration [10, 11]. The adapted method for construct-
ing correlation functions is computationally efficient on large volumes and produces good quality
of data.
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