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We compute the electromagnetic form factor of the pion at the mass mπ = 0.145 GeV on the large
volume of the spatial extent 8.1 fm, corresponding to mπ L ≈ 6. We use Nf = 2+1 configurations
generated with a non-perturbative improved Wilson quark action with the stout-smeared link and
Iwasaki gauge action at a−1 = 2.333 GeV. We obtain the form factor at small momentum transfer
without the twisted boundary condition. Our preliminary results for the form factor and the mean-
squared charge radius are reasonably consistent with the experiment.
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1. Introduction

The electromagnetic form factor is a quantity to describe the difference between a charged
hadron, which has internal structure, and a charged point particle. From the form factor, we can
extract information of the structure of the hadron, such as the mean-squared charge radius. Ex-
perimentally, the pion form factor is observed as the coefficient of the differential cross section
of pion-electron scattering [1]. Theoretically, the form factor fππ(q2) is defined from the vector
current matrix element as,

〈
π(p⃗′)

∣∣V4(⃗q = p⃗′ − p⃗) |π(p⃗)⟩= (Eπ(p⃗′)+Eπ(p⃗)) fππ(q2), (1.1)

where V4 is the time component of the electromagnetic current Vµ = 2
3 ūγµu− 1

3 d̄γµd − 1
3 s̄γµs, q is

space-like momentum transfer, and Eπ(p⃗) is the pion energy with the momentum p⃗.
So far, most lattice calculations of the pion form factor have been carried out at larger pion

mass mπ [2–6] than the physical one, while recently calculations near the physical quark masses
are reported [7, 8]. In this work, we calculate the pion form factor at the almost physical mπ ,
corresponding to 0.145 GeV, on a large volume of 8.1 fm to suppress the systematic errors coming
from the chiral extrapolation and finite volume effect. Thanks to the large volume, we obtain
the form factor at a small q2 without the twisted boundary condition. Using the formula in the
NLO SU(2) chiral perturbation theory, we fit our data of the form factor, and evaluate the mean-
square charge radius. The result of the charge radius at the physical mπ reasonably agrees with the
experiment and previous calculations. All the results presented in this report are preliminary.

2. Simulation setup

We use Nf = 2+ 1 QCD ensemble, which was generated in the previous work [9]. The con-
figurations were generated by using a non-perturbative improved Wilson quark action with 6 stout
smearing link [10] with the smearing parameter ρ = 0.1 and Iwasaki gauge action [11] at β = 1.82
corresponding to a−1 = 2.333 GeV. The clover coefficient and hopping parameters are csw = 1.11
and (κud ,κs) = (0.126117,0.124790), which corresponds to mπ = 0.145 GeV. The spatial and tem-
poral extents are L = T = 96, whose physical size is 8.1 fm. The same quark action and parameters
are employed in the calculation of the pion form factor.

In the measurement of the form factor, we use 80 configurations. For the 3-point function of
the vector current, we use Z(2)⊗Z(2) random wall source in the source time slice ti, where random
numbers are spread in spatial sites, color, and spin spaces, and sequential source technique in the
sink time slice t f . We adopt the temporal separation of |t f − ti|= 36, which is roughly 3.0 fm. The
same source operator is employed in the calculation of the pion 2-point function. Using the random
wall source, the calculation cost for the 2-point and 3-point functions can be reduced [5]. In order
to increase statistics, we repeat the measurements on each configuration by changing the source
time slice (ti = 0,24,48,72), temporal axis with the use of the space-time rotational symmetry, and
using 2 random wall sources. The initial and final momenta, p⃗ and p⃗′, are given by p⃗ = (2π/L)⃗n
and p⃗′ = 0⃗, where n⃗ is an integer vector of n = |⃗n|2 ≤ 6. The statistical error is estimated by
the one elimination jackknife method. We only calculate the connected 3-point function, because
the disconnected terms in the 3-point function vanish after gauge field average due to the charge
conjugation invariance [12].
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3. Calculation of form factor

The bare form factor f bare
ππ (q2) is calculated from the 3-point function of the vector current in

the range of 0 ≤ t ≤ t f as,

CπV π(p⃗′, p⃗, t f , t) = ⟨0|Oπ(p⃗′, t f )V4(⃗q = p⃗′ − p⃗, t)O†
π(p⃗,0) |0⟩

= f bare
ππ (q2)× Zπ(p⃗′)Zπ(p⃗)

4Eπ(p⃗′)Eπ(p⃗)
(Eπ(p⃗′)+Eπ(p⃗))e−Eπ (p⃗)te−Eπ (p⃗′)(t−t f ) + · · · , (3.1)

where Oπ(p⃗, t) = ∑x⃗ d̄(⃗x, t)γ5u(⃗x, t)e−ip⃗·⃗x, and Zπ(p⃗) = ⟨0|Oπ (⃗0,0) |π(p⃗)⟩. Zπ(p⃗) and Eπ(p⃗) are
determined from a fit of the pion 2-point function with the periodic boundary condition in the
temporal direction,

Cππ(p⃗, t) = ⟨0|Oπ(p⃗, t)O†
π(p⃗,0) |0⟩= Z2

π(p⃗)
2Eπ(p⃗)

(e−Eπ (p⃗)t + e−Eπ (p⃗)(T−t))+ · · · . (3.2)

The dots (· · · ) in the above equations represent excited state contributions, and we assume that they
can be negligible in proper t regions, except wrapping around effects of the pion in the temporal
direction in the 3-point function, which will be discussed later.

To obtain the renormalized form factor fππ(q2), we evaluate the following ratio R(q, t) at the
fixed p⃗′ = 0⃗ as,

R(q, t) =
2mπZVCπV π (⃗0, p⃗, t f , t)

(mπ +Eπ(p⃗))Zπ (⃗0)Zπ(p⃗)
eEπ (p⃗)t , (3.3)

where ZV = 1/ f bare
ππ (0) is the matching factor for the current renormalization, because fππ(0) gives

the charge of the pion, fππ(0) = 1. In 0 ≪ t ≪ t f , the ratio equals to fππ(q2), if the dots in eq.(3.1)
can be ignored. In this case, the contribution of the form factor, presented in Fig. 1 (a), dominates
the 3-point function in 0 ≪ t ≪ t f .

In a small mπT case in the periodic boundary condition in the temporal direction, however,
R(q, t) could depend on t even in 0 ≪ t ≪ t f as shown in the next section. The reason of the
behavior is considered to be wrapping around effects of the pion as shown in Fig. 1 (b), where the
pion propagates from the sink to the source across the temporal boundary, because the effect is not

(a) usual form factor (b) wrapping around effect

Figure 1: Diagrams of pion propagations in 3-point function. Figures (a) and (b) express the
diagrams for the usual form factor, and the wrapping around effect, respectively. Red and blue
arrows represent the pion propagations from the source (ti) and the sink (t f ), respectively. The
cross symbol denotes the current operator.

2



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
1
6
0

Electromagnetic pion form factor near physical point in Nf = 2+1 lattice QCD J. Kakazu

suppressed enough by e−mπ (T−t f ), when mπT is small. There is another wrapping around effect,
where the pion propagates to the opposite direction, from the source to the sink. This is similar to
the situation of Ref. [13]. Since these effects contain the two-pion propagation to the current, the
contributions are proportional to the matrix element ⟨ππ|V4 |0⟩.

For a fit of R(q, t), we assume the following fit form in 0 ≪ t ≪ t f ,

R(q, t) = f0 + f1 ×
e−E2π (p⃗)te−Eπ (p⃗)(T−t f )− e−E2π (p⃗)(t f −t)e−mπ (T−t f )

e−Eπ (p⃗)te−mπ (t f−t) , (3.4)

where f0, f1 are fit parameters, and the two-pion energy E2π(p⃗) = Eπ(p⃗)+mπ +∆E with ∆E being
the finite size effect of the two pions, which will be ignored in our analysis due to the large volume
of (8.1)3 fm3. f0 corresponds to fππ(q2). The second term is the contribution of the wrapping
around effects. From f1, it might be possible to determine ⟨ππ|V4 |0⟩.

4. Result

4.1 Extraction of form factor

Figure 2 shows that the data of R(q, t) have clear t dependences in the two smallest values of
q2. In the figures, the source and sink are located at ti = 0 and t f = 36, respectively. A fit of R(q, t)
with eq.(3.4) works well in our data, and is better than a constant fit assuming f1 = 0 in eq.(3.4).
The fit range is fixed to t = 15–21 in all q2. The fit result of f0, expressed by the solid blue lines
in the figure, is smaller than the value of R(q, t). The results in other momentum transfer q2 are
similar to these results.
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Figure 2: R(q, t) at the smallest two q2, q2 = 0.019 GeV2 (left) and 0.033 GeV2 (right). Red curves
represent the fit result with wrapping around effect in eq.(3.4). Solid (blue) and dashed (green)
lines express fππ(q2) obtained from fit with eq.(3.4) and a constant fit, respectively.

4.2 Analysis of form factor

Figure 3 shows the q2 dependence of fππ(q2). The value of the smallest q2 in our calculation
is not inferior to the one in previous studies with the twisted boundary condition, for example in
Ref. [3] as shown in Fig. 3. Our data reasonably agree with a monopole form with the experimental
charge radius. This feature is not seen in the larger mπ calculation [3] as presented in the figure.

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
1
6
0

Electromagnetic pion form factor near physical point in Nf = 2+1 lattice QCD J. Kakazu

To investigate the q2 dependence of fππ(q2), we fit the data with the NLO SU(2) chiral pertur-
bation theory (ChPT) formula [14] given by,

f SU(2)
ππ (q2) = 1+

1
f 2

[
2l6(µ)q2 +4H(m2

π ,q
2,µ2)

]
, (4.1)

where l6(µ) is the low energy constant, µ is the renormalization scale, f is the decay constant in
the chiral limit, and

H(m2,q2,µ2) =
m2

32π2

⎛

⎝−4
3
+

5
18

x− x−4
6

√
x−4

x
log

⎛

⎝

√
x−4

x +1
√

x−4
x −1

⎞

⎠

⎞

⎠− q2

192π2 log
m2

µ2 , (4.2)

with x = −q2/m2. In our fit we employ µ = 0.77 GeV and the result of f obtained from the
SU(2) ChPT fit on the configurations [9], f = 0.12925 GeV. From an uncorrelated fit with the
formula, we obtain l6(µ) =−0.01273(54) with χ2/d.o.f.= 0.42 using all the six data. A consistent
result, l6(µ) = −0.01289(51) with χ2/d.o.f. = 0.19, is obtained from a fit in the shorter fit range
with the three smallest q2 data. Our fit result of l6(µ) agrees with the value from the FLAG
paper [15], l6(µ) = −0.01233(127), which is evaluated by using the conversion formula [14],
l6(µ) = −1

6×(4π)2

[
l̄6 +2ln

(
mphys

π /µ
)]

, with l̄6 = 15.1(1.2). The curves of eq.(4.1) with l6(µ) for
our fit result and the FLAG value are presented in Fig. 3.
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Figure 3: q2 dependence of fππ(q2) compared with PACS-CS result at mπ = 0.297GeV [4], a
monopole form with the experimental mean-square charge radius, 0.451fm2, and NLO SU(2) ChPT
form eq.(4.1) with l6(µ) estimated from the FLAG paper [15], where we use f = 0.122553 GeV.
Our fit result with eq.(4.1) is also plotted.

4.3 Charge radius

The mean-square charge radius
〈
r2〉 is estimated from the fit result of l6(µ) through the for-

mula, which is defined by the first differential coefficient of eq.(4.1),

〈
r2〉= −6

d f SU(2)
ππ (q2)

dq2

∣∣∣∣∣
q2=0

=−12l6(µ)
f 2 − 1

8π2 f 2

(
log

(
m2

π
µ2

)
+1

)
. (4.3)
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Our preliminary result is
〈
r2〉= 0.423(15) fm2 with the above fit results from all the q2 data. The

error is only statistical.
The left panel of Fig. 4 shows the pion mass dependence of

〈
r2〉, which includes our result in

the current calculation, the ones of the previous studies [3–8], the estimated value from the FLAG
paper [15], and the experimental value. In the larger mπ calculations,

〈
r2〉 is smaller than the

experiment, while our result with mπ = 0.145 GeV is larger than these results, and closer to the
experiment.

From eq.(4.3) with mπ = 0.13957 GeV,
〈
r2〉 at the physical mπ is evaluated, and we obtain〈

r2〉 = 0.426(15) fm2. In the right panel of Fig. 4, our result is compared with the experimental
value and also the ones at the physical mπ in the previous works [3–8]. Our result is reasonably
consistent with the experiment and previous calculations.
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Figure 4: mπ dependence of
〈
r2〉 (left) and comparison of

〈
r2〉 at the physical mπ (right). In the

left panel, star and left triangle symbols represent the experiment and the estimated value from the
FLAG paper [15], respectively. In both panels, the closed circle is our result, and other symbols
are results of previous studies [3–8]. In the right panel, band of the solid lines expresses the
experimental value.

5. Conclusion

We have calculated the pion electromagnetic form factor in Nf = 2+1 QCD near the physical
pion mass (mπ = 0.145 GeV) on a large volume of (8.1 fm)3. For the fit of the 3-point function,
we have included the pion wrapping around effects due to the small mπT , and found that the fitting
form works well in our data. Thanks to the large volume, we obtain the form factor at the small
q2 without the twisted boundary condition. Our preliminary result of the form factor can be fitted
by the NLO SU(2) ChPT formula, and the result of l6(µ) is consistent with the one evaluated from
the FLAG paper. At the physical mπ , the result of

〈
r2〉 evaluated from l6(µ) with the NLO SU(2)

ChPT formula is reasonably consistent with the experiment and also the results for the previous
works.

In our simulation parameter, the strange quark is a little heavier than the physical one. To
determine

〈
r2〉 at the physical point, we need an extrapolation of the strange quark mass with the

reweighting method. This is one of important future works. We also need to estimate systematic
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errors, for example size of other excited state contaminations in the 3-point function rather than the
wrapping around effect.
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