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The low, euclidean momentum behavior of the hadron vacuum polarization (HVP) is critical for
determining, amongst other quantities, the anomalous magnetic moments of the muon. Here
we present lattice QCD results for the first two derivatives of the HVP function at vanishing
virtuality [1]. Computations are performed with 2+ 1+ 1 flavors of staggered quarks around
the physical mass point, in volumes of linear extent larger than 6 fm, and at six values of the
lattice spacing, allowing for a fully controlled continuum extrapolation. We further consider
possible uncertainties which stem from finite-volume and isospin-breaking effects. After adding
to our connected contributions the disconnected terms presented in [2], we compare the resulting
derivatives of the full HVP with phenomenological estimates.
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1. Introduction

The muon’s anomalous magnetic moments aµ = (gµ − 2)/2, with gµ the Landé g-factor, is
determined experimentally with a high precision of 0.5 ppm [3], and forthcoming experiments aim
to improve uncertainties to around 0.15 ppm [4]. The comparison of these results with Standard
Model (SM) predictions, accurate to about 0.4 ppm [5], provides a probe of physics beyond the
SM. At present, there is a 3.6 standard-deviation tension between the SM and experiment [6].

The largest source of the uncertainties for aµ in SM comes from the hadron vacuum polar-
ization (HVP) contribution due to its nonperturbative nature. Today, the HVP is best determined
via dispersion relations combined with the cross section data of e+e− to hadrons or the rate data
of hadronic τ decays [7]. However, since the pioneering work of [8], significant progresses have
been made in the lattice QCD calculations of the leading order (LO) HVP contributions (aLO−HVP

µ )
to aµ . Moreover, in the long run, this approach is likely to represent the most cost-effective way
to increase the precision of the HVP to the levels that will soon be required by the new round of
measurements of aµ [4] and, more generally, by particle physics phenomenology.

The low, euclidean momentum behavior of the HVP, determined in great part by its slope and
curvatures at vanishing virtuality, is critical for computing aLO−HVP

µ . In this contribution, we present
a full lattice QCD calculation of the first two derivatives of the HVP in the isospin limit, includ-
ing the contributions from u, d, s, and c quarks in the vicinity of the physical mass point. The
derivatives are computed, by Fourier transform, from spacetime moments of the quark electromag-
netic current two-point function. Here we focus on the quark-connected contributions. The quark-
disconnected contributions are discussed separately in Ref. [2]. We discuss possible uncertainties
which stem from finite-volume and isospin-breaking effects. We add to the results presented here
the disconnected contributions discussed in [2] and compare the total moments obtained with phe-
nomenological estimates.

2. Simulations

We employ the tree-level improved Symanzik gauge action [9] and a fermion action for four
flavors of stout-smeared [10] staggered quarks. The up and down quarks masses are taken to be
degenerate (mu,d = ml), and their ratio to the strange quark mass (ms) are tuned so that Nambu-
Goldstone (NG) pion and kaon masses are close to their physical values. The charm-quark mass
(mc) is fixed by mc/ms = 11.85 [11]. To define the physical mass point, we use the isospin corrected
pion/kaon masses, Mπ = 134.8 MeV and MK = 494.2 MeV [12]. The lattice spacing (a) from
the pion decay constant, using the Wilson-flow-based [13] w0-scale [14] at intermediate steps.
The trajectories are obtained using the Rational Hybrid Monte Carlo (RHMC) algorithm. The
topological charge undergoes sufficient number of tunnelings even on the finest lattices.

As summarized in Table 1, our lattice simulations are carried out in the vicinity of the physical
mass point on lattices of spatial extent L & 6 fm and of time extent T ' 9÷ 11 fm. The vector-
vector current correlator with light quarks is notoriously noisy at large distance. We address this
problem by performing a high-precision lattice calculation with 768 random source measurements.

We compute the electromagnetic vector current correlator, 〈 jµ(x) jµ(0)〉, where jµ/e= 2
3 ūγµu−

1
3 d̄γµd − 1

3 s̄γµs + 2
3 c̄γµc. We use the conserved lattice current at the source and sink so that

no renormalization is required. The Fourier transform of 〈 jµ(x) jµ(0)〉 gives the HVP tensor
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a[fm] T L #traj. Mπ [MeV] MK[MeV] #SRC (ud,s,c)
0.134 64 48 10000 ∼ 131 ∼ 479 (768,128,64)
0.118 96 56 15000 ∼ 132 ∼ 483 (768,64,64)
0.111 84 56 15000 ∼ 133 ∼ 483 (768,64,64)
0.095 96 64 25000 ∼ 133 ∼ 488 (768,64,64)
0.078 128 80 35000 ∼ 133 ∼ 488 (768,64,64)
0.064 144 96 4500 ∼ 133 ∼ 490 (768,64,64)

Table 1: Details of the simulations and statistics used here.

Πµν(Q2) = (δµνQ̂2− Q̂µQ̂ν)Π(Q2)+ · · · , where Q̂ = (2/a)sin(nπaQµ/Lµ) is the lattice momen-
tum and the “· · ·” denotes lattice artefacts. The scalar HVP Π(Q2) above is then responsible for
the non-perturbative hadronic effects in the leading-order (LO, O(α2), α = e2/(4π)) contribu-
tion to the muon anomalous magnetic moment: aLO−HVP

µ = (α/π)2 ∫ ∞

0 dQ2 ω(m2
µ ,Q

2)Π̂(Q2) with
Π̂(Q2) = Π(Q2)−Π(0). Here, the kernel ω(m2

µ ,Q
2) is a known kinematic function that diverges

at Q2 = 0 in such a way that the integrand peaks around the low Q2 value of (mµ/2)2. Because
of this, the first few coefficients of the Taylor expansion of Π̂(Q2) around Q2 = 0 are sufficient to
determine aLO−HVP

µ accurately [15, 16]. We obtain these coefficients by computing moments of the
correlator 〈 jµ(x) jν(0)〉:

Πn,µν = (−)n+1
∑
x
(x̂2(n+1)

ν /(2n+2)!) Re〈 jµ(x) jµ(0)〉 , x̂ν = min{xν ,Lν − xν} , (2.1)

where the Lν = L or T is the size of the lattice in the ν-direction. On an L3× T , L < T , lat-
tice, O(4) symmetry is reduced to the cubic group. This implies that the moments obtained from
different µν components correspond to different invariants which exponentially converge onto a
unique coefficient in the infinite-volume limit. Thus, we consider three different averages which
are invariant under spatial cubic transformations: Πn,ss = ∑i6= j Πn,i j/6, Πn,ts = ∑ j=1,2,3 Πn,4 j/3,
and Πn,st = ∑i=1,2,3 Πn,i4/3. The final results are given by Πn = (Πn,ss +Πn,ts +Πn,st)/3, while
the difference among the three quantities contain information about finite-volume effects. The
averaged moment Πn is composed of the connected and disconnected contributions, where the
former is further decomposed into the light (up and down), strange, and charm contributions:
Πn = Πcon

n +(1/9)Πdisc
n with Πcon

n = (5/9)Πl
n +(1/9)Πs

n +(4/9)Πc
n. Here we focus on the con-

nected part Πcon
n , while the disconnected part Πdisc

n is detailed in another contribution of ours [2].
Let us consider the light component contribution in the temporal component Πn,st . We denote

it as Πl
n,st , which is characterized by the correlator Cl(t) = ∑x ∑i=1,2,3 Re〈 ji(t,x) ji(0)〉/3|ud (c.f.

Eq. (2.1)). The correlator Cl(t) can extend up to T/2 . 6 fm, and the signal deteriorates quickly
with increasing distance. To address this problem, we introduce a cut tc fm in time, and replace
the Cl(t) by an upper bound (Cl(tc)ϕ(t)/ϕ(tc)) and a lower bound (zero) for t > tc. Here, ϕ(t) =
cosh[E2π(T/2− t)] with E2π denoting energy of two pions, each with the smallest nonvanishing
lattice momentum, for which we use 2π/L. Typically the Πl

n,st obtained with two bounds agree
for tc & 3 fm. We adopt tc = 3.1 fm and average the Πl

n,st obtained with two bounds to get the
final result. We confirmed that the corrections to the upper bound from pion-pion interactions are
negligible, using the model of Ref. [17] and neglecting four-pion contributions.
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3. Results

We fit the lattice results as a function of the lattice spacing squared a2 and the pion/kaon mass-
squared deviations, ∆M2

π,K , from their physical values. For the a2 dependence, we have confirmed
that the linear ansatz is enough and adopted in the following. In Fig. 1, we show these fits for the
connected part of the first two Taylor coefficients Π

l,s,c
n , n = 1,2. The final central value and sys-

tematic error of the continuum results are obtained in an extended frequentist approach [18].They
are, respectively, the mean and standard error of the Akaike-Information-Criterion-weighted distri-
butions obtained by imposing four different cuts on lattice spacing (no cut (fit0), a ≤ 0.118 (fit1),
0.111 (fit2), 0.095 (fit3) fm), corresponding to the four fit lines in each plot. Owing to the large
number of lattice spacings (6) and more generally simulation points (15), we are able to take the
continuum limit and interpolate to the physical mass point with full control over systematics error.

In the leftmost panels of Fig. 1, we show the continuum extrapolation of the light component
contributions: Πl

n=1 (top) and Πl
n=2 (bottom). The red squares represent our lattice results for each

simulation, and they are consistent with the HPQCD results [19] (green triangles). Reasonable fit
qualities are achieved without pion/kaon mass correction terms. The coarsest lattice gives a value
about 15% smaller than the continuum limit.

In contrast to the light components, the kaon mass correction term is necessary to obtain a
reasonable fit quality for the strange contributions to the moments. In the middle panels of Fig. 1,
the kaon-mass corrected results (Πs

n=1 (top) and Πs
n=2 (bottom)) are shown as red squares, and are

compared to the uncorrected results (gray squares) as well as to the HPQCD results [16] (green
triangles). Good fit qualities are achieved. The strange channel has much smaller lattice artefacts
than the light (∼ 2%), since it is much less affected by taste violations.

For the charm contribution, the fit qualities are much worse, because the precision of the data
is orders of magnitude better than for the lighter flavors. Here we fit only a random subset of
10 configurations, which increases the statistical error and leads to good fit qualities. Here, mass
corrections are needed. In the right panels of Fig. 1, the mass corrected data (Πc

n=1 (top) and Πc
n=2

(bottom)) are shown as red squares, and are compared to the uncorrected results (gray squares) as
well as to the HPQCD results [11]. Results on the coarsest lattice deviate by about 20% from the
continuum limit.

4. Summary and discussion

The continuum limit values of the connected contributions to the slope and curvature of the
HVP function at vanishing virtuality are summarized in Table 2, together with their disconnected
parts [2]. The total lattice uncertainty on Π1 is 1.8% and on Π2, 4.4%. However, additional errors
may result from finite-volume (FV) and isospin-breaking effects. Here we discuss those corrections
and compare our results with phenomenology.

In the absence of a systematic study with simulations in a variety of volumes, only model
estimates of FV effects can be made. For large volumes, FV corrections will be governed by pion
contributions that can be computed in chiral perturbation theory (χPT) [20]. These are largest in
the I = 1 channel which is dominated by two-pion exchange at large distances. For all three index
combinations, ss, ts and st (see text after Eq. (2.1)), we compute the FV corrections for Πl

n at one
loop in χPT. These are shown as a function of box size L in Fig. 2, for n = 1,2 and T/L = 3/2. We
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Figure 1: Continuum extrapolations of the light (left), strange (middle), and charm (right) contributions to
the first moment Πn=1 (top) and the second one (bottom). For comparison, we show HPQCD results (green
triangles) [11, 16, 19].

then take the average of the maximum and the minimum differences as our central value, with an
uncertainty given by the half distance between the maximum and minimum. As read off at L = 6
fm in Fig. 2, the correction is on the level of 2% (10%) for Π1 (Π2). We record these corrections
for Πn=1,2 in Table 2. This correction increases rapidly with moment number, therefore we have
chosen not to quote moments beyond the second one.
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Figure 2: The FV of the first (left) and second (right) moments estimated by the χPT.

Compared to phenomenological determinations [7, 21], our md = mu calculation without QED
is missing a number of effects associated with the isospin breaking: ρ−ω and ρ− γ mixing, final
state radiation, and the π0γ and ηγ contributions. This leads to a correction of 1.3% of the result
for aLO−HVP

µ (for details, see [1]). However, a competing effect enters. In our calculation without
electromagnetism, the charged pion has a mass which is smaller than its physical value. As a
result, the two-pion contribution to aLO−HVP

µ is enhanced. This leads to a correction whose sign is
opposite to the correction associated with the sum of effects discussed above. A phenomenological
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Π1[GeV−2] Π2[GeV−4]
light 0.1653(17)(16) −0.295(10)(7)
strange 6.57(1)(3)×10−2 −5.33(1)(4)×10−2

charm 40.3(2)(6)×10−4 −2.66(3)(11)×10−4

disconnected −1.5(2)(1)×10−2 4.4(1.0)(0.4)×10−2

I = 0 0.0167(2)(2) −0.018(1)(1)
I = 1 0.0827(8)(8) −0.147(5)(4)
total 0.0993(10)(9) −0.165(6)(4)
I = 1 FV corr. 0.0006(23) −0.016(10)
total + FV corr. 0.0999(10)(9)(23)(13) −0.181(6)(4)(10)(2)

Table 2: Summary table for Πn=1,2 [1]. For the lattice results without FV corrections (first seven lines), the
first and second brackets are the statistical and lattice systematic uncertainties, respectively. In the following
two lines, we include an estimate of FV corrections obtained using LO χPT (see text). In the final results on
the last line, the uncertainties due to FV and isospin-breaking corrections are given in the third and fourth
brackets, respectively.

description based on e+e− data indicates that their magnitudes are very close [22]. Thus, we assume
here that the total correction is (0.0±1.3)%, where we have taken the error to be of the typical size
of the corrections themselves. Because of the dominant role of Π1 in determining aLO−HVP

µ , one
expects a tantamount correction on that coefficient. Inferring the correction on Π2 is less direct,
but we assume here that it is of the same size as for Π1. Thus, we add (0.0± 1.3)% of Πn=1,2 to
our results for these quantities, after they have been corrected for finite-volume effects. Putting
everything together we quote our final results for the first two moments in the last row of Table 2.
Combining all four errors in quadrature, we obtain Π1 (Π2) with a total uncertainty of 2.9% (7.2%).

A phenomenological determination of Π1 and Π2 is has only become available recently [23].
Taking their “data direct” results, which are obtained from an interpolation of e+e−→ hadrons data,
and converting them to our conventions, we get Π1 = 0.0990(7) GeV−2 and Π2 = −0.2057(16)
GeV−4. These numbers can be compared to our final results, i.e. those given in the last row of
Table 2. In absolute value, their result for Π1 is 0.3 combined standard deviations smaller than
ours and for Π2, 1.9 σ larger. The latter might be due to an underestimate of FV corrections in
our determination of the second moment, or some problem with the experimental data used in the
phenomenological analysis of [23].
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