
P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
1
8
4

Computing the muon anomalous magnetic moment
using the hybrid method with physical quark
masses

Matt Spraggs∗a, Peter Boyleb, Luigi Del Debbiob, Taku Izubuchic,d , Andreas Jüttnera,
Christoph Lehnerc, Kim Maltmane, f , Marina Krstić Marinkovićg, Antonin Portellia,b
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1. Introduction

The anomalous magnetic moment of the muon, aµ , is one of the most accurately determined
quantities in particle physics, with an accuracy of the order of one part per million [1]. There
is currently a 3σ to 4σ tension between the experimental and theoretical determinations of this
quantity. The new muon g−2 experiments at Fermilab and J-PARC aim to reduce the experimental
uncertainty by a factor of four, making a reduction in the theoretical error desirable. The leading-
order (LO) hadronic contribution is the main source of this uncertainty, and is currently computed
using σ (e+e−→ hadrons) data [2, 3]. A first-principles verification of this quantity is therefore
very enticing. Here we present computations of selected connected contributions to this quantity.

Thanks in part to the work in [4] the individual contributions to a(2)had
µ from the various pos-

sible Wick contractions may be considered separately. For a given Wick contraction C one may
consider the associated contribution to a(2)had

µ , denoted a(2)had,C
µ . This can be comptued as fol-

lows [5]:

a(2)had,C
µ =

(
α

π

)2 ∫ ∞

0
dQ2

Π̂
C(Q2) f (Q2), (1.1)

where α is the QED coupling, Π̂C(Q2) = 4π2(ΠC(Q2)−ΠC(0)) is the infrared subtracted hadronic
vacuum polarisation (HVP) form factor computed from an individual Wick contraction C, and f is
the integration kernel derived in perturbation theory with a singularity at Q2 = 0 [5]. The integrand
is highly peaked near Q2 ≈m2

µ/4 such that the final value of a(2)had
µ is highly sensitive to variations

in Π̂(Q2) for small Q2.
In what follows we summarise our recent work on the strange connected contribution to a(2)had

µ ,

denoted a(2)had,s
µ , before turning to the light connected contribution. We finish with a brief discus-

sion of ongoing work concerning the light and charm contributions.

2. Simulation Details

Simulations have been performed on the two 2+1 flavour Möbius domain wall fermion (MDWF)
ensembles with near-physical pion masses described in [6]. We compute the quark-connected
vector-vector two-point function for flavour f , C f

µν , using Z2 wall sources and MDWF local-
conserved currents, i.e.:

C f
µν(x) = ZV Q2

f 〈V
f

µ (x)V f
ν (0)〉, (2.1)

where ZV is the vector renormalisation constant, Vν(x) =ψ(x)γνψ(x) is the local current and Vµ(x)
the conserved current for MDWF, as described in [6]. For details of the specific measurements used
to compute a(2)had,s

µ we refer the reader to [7].
When computing Cl

µν we performed measurements on the 483×96 ensemble of [6] only, using
diluted stochastic Z2 wall sources and subspace deflation to achieve an improvement in the signal-
to-noise ratio of our measurements. In addition, Cl

µν is computed using local currents at both the
source and the sink with unitary light quark masses. For full detail see [8].

3. Analysis

Our general analysis approach is described in detail in [7] and [9], so what follows will be
a brief summary only. We implemented a variety of analysis strategies in order to ascertain the
dependence of a(2)had,s

µ and a(2)had,l
µ on the analysis technique.
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3.1 HVP Computation

We compute the HVP form factor by Fourier-transforming the vector-vector two-point func-
tion and exploiting the lattice decomposition of the HVP tensor. We remove a potential source of
lattice cut-off effects by considering only the diagonal components of the HVP tensor where Q̂µ = 0
[10]. Combining this result with a lattice Fourier transform produces the following expression for
the HVP form factor:

Π(Q̂2) =
a4

3 ∑
t,x,i

(
eiQt t −1

Q̂2
t

)
Cii(x, t), (3.1)

where Qt is the temporal component of the photon momentum and the subtraction of unity within
the brackets effectively subtracts the zero-mode [11]. In the infinite volume limit the zero-mode
vanishes, and subtracting it greatly reduces the noise in the low-Q2 region. In the strange case we
observed a factor of 48 improvement in the relative error on Π(Q̂2) at the smallest non-zero value
of Q2 when Z2 wall sources were used.

When computing the contribution to Π(Q̂2) from light quarks we also include a subtraction
of the second time moment of Πµν . This automatically subtracts Π(Q2 = 0) to produce directly
Π̂, removing unphysical quadratic divergences introduced by using a non-transverse correlation
function. We combine this with a truncation of the sum in Equation (3.1) to reduce the noise
introduced into the HVP at the expense of an additional systematic to be quantified. For further
details, see [8].

3.2 Hybrid Method

We used the hybrid method as described in [12]. This method consists of partitioning the inte-
grand in (1.1) into three non-overlapping adjacent regions using cuts at low- and high-Q2 (Q2

low and
Q2

high). We then compute the integrand for the low-, mid- and high-Q2 regions using a parametrisa-
tion of the HVP, direct numerical integration and perturbation theory, respectively. Our parametri-
sation of the low-Q2 region allows us to compute Π(0) and in turn Π̂(Q2). Restricting the use of
an HVP parametrisation to the low-Q2 region allows us to minimise systematic effects [12].

We parametrise the HVP using both Padé approximants and conformal polynomials, the details
of which may be found in [9].

We use two techniques for constraining the low-Q2 models: χ2 minimisation and discrete time
moments [13]. At our current level of precision we can only perform uncorrelated fits due to the
very singular nature of the covariance matrix.

We also implement a discrete version of the continuous time moments method described
in [13]. Specifically we use a general discrete derivative operator ∆̂Qt in place of the continuous
partial derivative ∂Qt , allowing us to write

∆̂
(2n)
Qt

(
a4

3 ∑
t,x,i

e−iQt tCii(x, t)

)∣∣∣∣∣
Qt=0

= ∆̂
(2n)
Qt

(
Q̂2

t Π(Q̂2
t )
)∣∣

Qt=0 . (3.2)

Inserting one of the above parametrisations of the HVP allows us to set up a system of equations
that can be solved to constrain the parametrisation. Our use of discrete derivatives avoids the
assumption of an infinite volume that would be required in the continuous case.

3.3 Continuous Momenta

We can also compute the HVP directly at any momentum by inserting this momentum di-
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rectly into the lattice Fourier transform [14, 15]. Specifically, defining Qt =
2πnt

T , we can let

nt ∈ [−T/2,T/2). This allows a(2)had
µ to be computed without a parametrisation of the HVP.

This procedure incurs the possibility of introducing finite volume effects into a(2)had
µ . However,

we found in [7] that these were negligible in the case of a(2)had,s
µ . Furthermore, it can be demon-

strated that these effects are exponentially suppressed by the temporal extent of the lattice [14].

4. Results

4.1 Strange Quark-Connected Contribution

In computing a(2)had,s
µ using the hybrid method we used six different parametrisations of the

HVP: P0.5GeV
3 , P0.5GeV

4 , P0.6GeV
3 , P0.6GeV

4 , R1,1 and R1,2. We also scanned three low cuts: 0.5 GeV2,
0.7 GeV2 and 0.9 GeV2. We use a single high cut of 5 GeV2 in both the hybrid and continuous
momentum methods. In this second method we used a step size of 0.005 for nt .

As we described in [7], the use of both partially quenched and unitary strange quark masses in
our measurements allows us to perform a two-dimensional linear fit in both a2 and the relative de-
viation of the strange mass from its physical value. Our use of both partially quenched and unitary
measurements highlighted the mass-dependence in a(2)had,s

µ : including the former set of measure-

ments resulted in a shift in the value of a(2)had,s
µ from approximately 50×10−10 to 53×10−10.

Figure 1 demonstrates the various values of a(2)had,s
µ computed in this analysis. Good agree-

ment is found between all values of a(2)had,s
µ . This suggests that the systematic error resulting

from the various analysis techniques is small compared to the statistical uncertainty. In addition,
the distribution of results is in accordance with the findings of [16], which indicated that greater
systematic uncertainties should be expected where low order Padé approximants and conformal
polynomials are used in combination with large Q2

low.
We anticipate finite volume effects to be negligible in the case of the strange quark-connected

contribution. Since our computations are performed in the limit of isospin symmetry, isospin and
G–parity will be conserved quantities within the HVP. We therefore argue that it is not possible for
the quark-connected strange HVP to couple to the two pion ground state associated with the light
HVP. Instead we expect finite volume effects to be proportional to e−mKL, where mKL ≈ 13.8 for
the ensembles used in this study.

4.2 Light Quark-Connected Contribution

We adopted a similar approach in computing a(2)had,l
µ to that used in computing a(2)had,s

µ . We
again applied the hybrid method, this time using the six parametrisations: R0,1, R1,1, R1,2, P2mπ

2 ,
P2mπ

3 and P2mπ

4 . We used the same low cuts as in the strange case, i.e. 0.5 GeV2, 0.7 GeV2 and
0.9 GeV2. In this case we used a high cut of 7 GeV2. Our application of the continuous momenta
approach also used a step of 0.005 for nt .

Figure 2 illustrates the various values of a(2)had,l
µ computed as part of our analysis. The values

computed here are derived from an HVP form factor computed by truncating the sum in Equa-
tion (3.1) at t = 25. We anticipate that the variation of the point of truncation can be incorporated
into our analysis to determine the systematic error arising from this approach.

Although the results in Figure 2 are not derived from the complete HVP, one can still observe
some of the conclusions drawn by the authors of [16]. Most notable of these is the much stronger
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Figure 1: Stacked histograms describing the 73 values of a(2)had,s
µ computed using the various anal-

ysis techniques, colour coded by the low-Q2 parametrisation (panel (a)), the method used to match
these parametrisations (panel (b)), Q2

low (panel (c)) and the numerical method used to integrate the
mid-Q2 region (panel (d)). The large grey band illustrates the final statistical error in the result.

dependence of a(2)had,l
µ on the value of Q2

low, which is most apparent in the case of the lowest-

order conformal polynomial. In addition, the much greater variation between values of a(2)had,l
µ as

compared to the analysis of a(2)had,s
µ is in accordance with the findings of [16]. The greater degree

of curvature in the light HVP over the strange means that the systematic error in any particular
value of a(2)had,l

µ computed using this method will be correspondingly greater.

The preliminary nature of the results for a(2)had,l
µ shown here cannot be understated. The

cut-off effects in our result remain unquantified. Finite volume effects are currently observed to
be consistent with the predictions of NLO finite volume chiral perturbation theory [8, 17], and a
designated study of various lattice volumes with a fixed temporal extent is underway.

5. Summary

We have computed the strange contribution to the anomalous magnetic moment of the muon
using domain wall fermions with physical quark masses. We have also computed a set of prelim-
inary values of a(2)had,l

µ . We used a variety of analysis techniques, in particular the hybrid method
proposed in [12] and continuous momenta [14]. These variations, along with isospin and G–parity
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Figure 2: Stacked histograms illustrating the various values of a(2)had,l
µ computed as part of this

analysis, colour coded by the low-Q2 parametrisation (panel (a)) and the low-Q2 cut (panel (b)).

conservation arguments, have allowed us to compute a systematic error on our value of a(2)had,s
µ . We

hence state a(2)had,s
µ = 53.1(9)(+1

−3)×10−10 as our final value, which is in good agreement with the

determination by HPQCD [13] and well within the error requirements of a 1% total error on a(2)had
µ .

Our work on the light contribution is ongoing, with the quantification of finite volume effects
remaining our chief concern. Second to this we must determine the extent of the cut-off effects
within our results, and it may be possible to draw on knowledge from our computation of a(2)had,s

µ .

Following on from our success in computing the quark-disconnected contribution to a(2)had
µ

earlier in 2016 [18], our focus now lies in computing the remaining contributions to a(2)had
µ required

for a total value with sub-percent precision. Specifically, we are actively investigating the charm
contribution and determining the extent of corrections from isospin breaking [19].
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