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In QCD simulations at small lattice spacings, the topological charge Q evolves very slowly and, if
this quantity is not properly equilibrated, we could get incorrect results for physical quantities, or
incorrect estimates of their errors. We use the known relation between the dependence of masses
and decay constants on the QCD vacuum angle θ and the squared topological charge Q2 together
with chiral perturbation theory results for the dependence of masses and decay constants on θ to
estimate the size of these effects and suggest strategies for dealing with them. For the partially
quenched case, we sketch an alternative derivation of the known χPT results of Aoki and Fukaya,
using the nonperturbatively correct chiral theory worked out by Golterman, Sharpe and Singleton,
and by Sharpe and Shoresh. With the MILC collaboration’s ensembles of lattices with four flavors
of HISQ dynamical quarks, we measure the Q2 dependence of masses and decay constants and
compare to the χPT forms. The observed agreement gives us confidence that we can reliably
estimate the errors from slow topology change, and even correct for its leading effects.
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1. Evolution of Q

QCD simulations using (approximately) continuous evolution algorithms show very slow evo-
lution of the topological charge Q when the lattice spacing is small. This is expected, since in the
continuum theory Q cannot change in a continuous evolution of the fields. This is a concern for
QCD simulations since the distribution of Q may not be properly sampled in a simulation of practi-
cal length. Here we study the evolution of Q in the MILC collaboration’s ensembles of lattices with
a one-loop Symanzik and tadpole improved gauge action and four flavors of highly improved stag-
gered quarks (HISQ). We use chiral perturbation theory to compute the effects of poor sampling of
Q on pseudoscalar masses and decay constants, and compare these results to our simulations.

The ensembles we study have lattice spacings ranging from 0.09 fm to 0.03 fm, and light sea
quark masses either at one fifth of the strange quark mass or approximately tuned to the physical
light quark mass. Figure 1 shows the time histories of Q/V 1/2, where V is the four dimensional
lattice volume in fm4. In this plot the blue traces are for ensembles with light sea quark mass one
fifth of the strange quark mass and red traces for ensembles with physical light quark mass. The
increasing autocorrelation time of Q as a gets small is clearly visible, and we see that at a = 0.03
fm the simulation has not yet explored most of the desired values of Q2. We also see that for each
lattice spacing the local structure of the time histories is very similar for the ml = ms/5 ensemble
and the physical ml ensemble. However, in the ml = ms/5 ensemble Q ranges over larger values,
therefore taking longer to random walk through this range, leading to a longer autocorrelation time.
This is as expected, since the gauge action controls the tunneling rate for Q, so the average squared
change in Q per unit volume per unit simulation time is approximately independent of the light
quark mass. However, the fermion determinant does suppress the average Q2, and we expect the
topological susceptibility, 〈Q2/V 〉, to be approximately proportional to ml .

Figure 2 shows the tunneling rate, 〈(∆Q)2 /(V dt)〉 with octagons, where the blue symbols are
for the ms/5 ensembles and the red for the physical ml ensembles. We see that the tunneling rate
doesn’t depend much on the quark mass, but is decreasing as expected as a gets small. (In the
cases where there are two blue octagons, there were two sub-ensembles with a different molecular
dynamics trajectory length in each sub-ensemble.) The crosses in Fig. 2 show the topological
susceptibility, 〈Q2/V 〉. Here we see the expected strong dependence on light quark mass. The
small error bar on the 0.03 fm point is unrealistic — it simply reflects the fact the Q is basically
stuck near this value in this simulation.

2. Theoretical treatment of the dependence on topological charge

The topological susceptibility is defined by [1]

Z(θ) =
∫

DADΨ̄DΨ exp(−S[A,Ψ̄,Ψ])exp(−iθQ[A]) (2.1)

χt ≡ −
1
V

(
1
Z

∂ 2Z
∂θ 2

)∣∣∣∣∣
θ=0

=
1
V
〈Q2〉. (2.2)

1



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
1
8
9

Non-equilibration of topology Doug Toussaint

Figure 1: Topological charge time histories for various lattice spacings. Blue traces are for ensembles with
light sea quark mass one fifth of the strange quark mass and red traces for ensembles with light sea quark
mass at its physical value. Notice the narrower distributions and shorter autocorrelation times for physical
quark mass ensembles. Multiple traces in some graphs correspond to multiple runs, sometimes with differing
trajectory lengths.

Quantities evaluated at fixed Q are found by Fourier transforming

ZQ =
1

2π

∫
π

−π

dθ exp(iθQ)Z(θ)

GQ = 〈O1O2...On〉Q =
1

ZQ

1
2π

∫
π

−π

dθ exp(iθQ)Z(θ)G(θ)

with G(θ) = 〈O1O2...On〉θ . For large 4-dim volumes V , we can do the θ integrals by the saddle
point method to find (for B the mass M or the decay constant f ) [2, 3]

B
∣∣
Q,V = B+

1
2χTV

B′′
(

1− Q2

χTV

)
+O

(
1

(χTV )2

)
(2.3)

where B′′ ≡ ∂ 2B
∂θ

2

∣∣
θ=0. By Eq. (2.2), the correction vanishes when averaged over Q.

Since the quantities M′′ and f ′′ are physical, we can get a theoretical handle on topological
effects by calculating them in continuum, infinite volume, χPT. A first calculation of M′′ in χPT for
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Figure 2: Average topological susceptibility < Q2/V > (crosses) and tunneling rate 〈(∆Q)2〉 (octagons)
versus lattice spacing. The cyan and magenta squares are the lowest order chiral perturbation theory predic-
tions for the susceptibility.

full (unitary) QCD appears in Ref. [2]. Since most of our lattice data is partially quenched, we need
to extend the calculation to M′′ and f ′′ to partially quenched χPT (PQχPT). Reference [4] worked
this out, using the replica method to remove the determinant of the valence quarks. However,
the required calculation is non-perturbative, at least on its face, since the vacuum state changes
in the presence of θ . The replica method is only justified perturbatively, so a non-perturbatively
safe method is preferable. The Lagrangian approach of Ref. [5], which introduces ghost (bosonic)
quarks to cancel the valence quark determinant, is also only valid perturbatively, since it ignores the
requirement that bosonic path integral be convergent. References [6, 7] fixed the non-perturbative
problems of the Lagrangian approach by taking into account the convergence requirement.

The PQχPT Lagrangian in the presence of θ for nF sea quarks, nV valence quarks, and nV

ghost quarks is [6, 7]

L =
f 2

8
str(∂µΣ∂µΣ

−1)− B f 2

4
str(e−iθ/nF M Σ+ eiθ/nF M Σ

−1), (2.4)

where str is the supertrace, the factors e±iθ/nF arise from an anomalous rotation to remove the iθQ
term in Eq. (2.1), and Σ is an (nF +2nV )×(nF +2nV ) matrix constructed from the meson field Φ:

Σ = e2iΦ/ f , Φ =

(
φ χ̄

χ −iφ̂

)
. (2.5)

Here φ and φ̂ are hermitian bosonic fields1, representing quark-quark and ghost-ghost mesons,
respectively. The quark-ghost fields χ and χ̄ are fermionic. The field φ̂ is integrated from −∞

to +∞; the factor i in Eq. (2.5) ensures a convergent path integral, making the φ̂ action positive
definite. Convergence for the φ integral is not a problem because the domain of φ is a compact
space, as usual. Subtleties for fields along the diagonal have been ignored in Eq. (2.5) for simplicity.

1Technically, this applies to the “body” of φ̂ .
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In the full theory, we would now minimize the potential energy term to find the vacuum state
〈Σ〉. Here, the potential energy is complex. Reference [6] argues that we should therefore find
a saddle point (deforming the φ̂ contour as needed), not a minimum. We note that, unlike what
happens in the quenched case [6], the symmetry between valence and ghost quarks is automatically
preserved by the saddle point, and does not need to be imposed by hand. To find the θ -dependence
of the mass (at tree level), we can then expand the Lagrangian to quadratic order in Φ around the
vacuum state by writing

Σ =
√
〈Σ〉 e2iΦ/ f

√
〈Σ〉. (2.6)

This way of expanding keeps “extended parity” symmetry (parity + θ→−θ ) simple: Φ→−Φ,
Σ→ Σ−1. For the decay constant, we similarly expand the axial current to linear order in Φ.

For nF = 3 with masses mu = md = m and ms, and nV = 2 with masses mx, my, we find

M′′xy = −Mxy
m2m2

s

2(m+2ms)2
1

mxmy
,

f ′′xy = − fxy
m2m2

s

4(m+2ms)2
(mx−my)

2

m2
xm2

y
. (2.7)

These results agree with those in Ref. [4]. This indicates that it is not necessary to use a nonpertur-
batively correct approach for this problem; the reason seems to be that in the end we only need the
new vacuum state in the infinitesimal neighborhood of θ = 0. The singular limit as mx or my→ 0
presumably comes from topological zero modes, which are not suppressed by low valence-quark
mass since the valence determinant is absent. For nF = 4, decoupling works (if mc is sufficiently
heavy), so we can still use the above results.

Figure 3: ∂ 2M
∂θ

2 on ensembles with ml = ms/5 along the line mx = my. The red line is the PQχPT prediction
(no free parameters), and the square is the unitary point.

3. Comparison to simulation results

We have calculated pseudoscalar masses and decay constants on the HISQ ensembles de-
scribed above, using methods described in Ref. [8]. To find the dependence on the topological

4



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
1
8
9

Non-equilibration of topology Doug Toussaint

charge, we use the results of a single-elimination jackknife analysis of these quantities together
with the time histories of topological charge shown above. We first construct effective masses and
decay constants for each lattice by taking the ensemble average values minus N times the deviation
of the corresponding jackknife sample value from the ensemble average. Then we fit to a linear
function of the topological charge, M = M0 +

C
2 Q2, assigning each data point an error equal to

the standard deviation of the distribution. (Strictly speaking, it should be the standard deviation
reduced by the contribution of the dependence on topological charge to the variance, but this turns
out to make little difference.) Then we use Eq. 2.3 to convert C into a derivative with respect to θ .

The results are noisy, but consistent with the χPT predictions. Statistically significant signals
are found in the ml = ms/5 ensembles, since these have much smaller physical volumes than the
physical light quark mass ensembles. For example, in the a ≈ 0.06 fm ensembles the ml = ms/5
lattices have a volume of 180 fm4, while the physical ml lattices have a volume of 1920 fm4. Also,
Eq. 2.7 shows that the derivatives of the masses and decay constants have a partially quenched
divergence when mx or my goes to zero with ml fixed, and for the ml = ms/5 ensembles we have
used valence quark masses smaller than ml , in some cases as small as the physical ml .

Figure 3 shows ∂ 2M
∂θ

2 for the ms/5 ensembles for degenerate valence quark masses, mx = my.
The red line in the figure is the PQχPT prediction in Eq. 2.7, which we emphasize is a prediction
with no free parameters. Obviously the statistical errors are large, but they are consistent with the
prediction, and the divergence at small valence quark mass is clearly seen. Since ∂ 2F

∂θ
2 vanishes

for degenerate valence quarks, we plot this quantity along different lines in Fig. 4. The left panel
shows ∂ 2F

∂θ
2 as a function of one valence quark mass, mx, with the other fixed at the strange quark

mass, together with the χPT prediction. The right panel shows ∂ 2F
∂θ

2 along lines where my is held

fixed at the lightest valence quark mass available in each ensemble. The vanishing of ∂ 2F
∂θ

2 when the
valence quarks are degenerate is particularly striking in this plot.

Knowing the dependence of masses and decay constants on the average Q2, we can correct
our simulation results to account for the difference of the average in our simulation, < Q2 >sample

and the correct < Q2 >. To estimate this correct < Q2 > we use the lowest order χPT result,
χT = f 2

π

4 M2
I where 1/M2

I = 2/M2
π,I +1/M2

ss,I [1]. Here the “I” indicates the taste singlet masses [9].
The χPT results are shown in Fig. 2. For large a the deviation from the lowest order χPT results
is due to lattice artifacts, probably mostly higher order taste breaking effects, but for a = 0.042 and
0.03 fm we expect the χPT results to be pretty good. For an example of the size of these effects
in our simulation, we look at fK/ fπ in our two ensembles with a ≈ 0.042 fm. This ratio has very
small statistical errors, so this is a good test. To make this correction, rearrange Eq. 2.3 as

fcorrected = fsample−
1

2χTV
F ′′
(

1−
< Q2 >sample

χTV

)
For the 0.042 fm physical ml ensemble, with L = 6.05 fm and estimating <Q2>sample

χTV ≈ 0.7 we

find a fractional shift ∆ f
f = 0.0002. This can be compared to our statistical error on this ratio,

0.0010 and to the “conventional” finite size effects from pions propagating around the periodic
lattice, estimated in NLO staggered χPT , of 0.0009. The effects are larger in the ensemble with
ml/ms = 0.2, since these lattices have much smaller volume and a partial quenching divergence. In
this case a similar estimate gives ∆ f

f ≈−0.002 to be compared with a statistical error of 0.003.
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Figure 4: ∂ 2F
∂θ

2 on ensembles with ml = ms/5. The left panel shows ∂ 2F
∂θ

2 as a function of one valence quark
mass, mx along the line my = ms. The red line is the PQχPT prediction (no free parameters), which vanishes
for degenerate quarks. The right panel shows the quantity with my fixed to the smallest available value.
The lines are the PQχPT predictions. There are three separate lines in the right panel because the smallest
valence quark mass was different in each ensemble, 0.1ms, 0.05ms and 0.037ms for the 0.09, 0.06 and 0.042
fm ensembles respectively.

We close by noting that this strategy is in the same spirit as our treatment of “conventional”
finite size effects. We use χPT to estimate the effects and correct our results, and estimates of the
effects of higher order χPT and/or uncertainties in the χPT parameters should be included in the
systematic error budget.
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