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tree-level Luescher-Weisz gauge action at β = 3.4,3.46,3.55 and β = 3.7, corresponding to lat-
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coefficients which are proportional to non-singlet quark mass combinations and also discuss the
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matrix.

34th annual International Symposium on Lattice Field Theory
24-30 July 2016
University of Southampton, UK

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:piotr.korcyl@ur.de
mailto:gunnar.bali@ur.de


P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
1
9
0

Non-perturbative determination of improvement coefficients Piotr Korcyl

1. Introduction

Monte Carlo simulations of Quantum Chromodynamics suffer from discretizations effects.
Depending on the chosen discretization of the action such effects can disappear proportionally to a
power of the lattice spacing a. Wilson’s prescription for the discrete pure gauge action gives a2 cut-
off effects, whereas the Dirac-Wilson operator introduces corrections linear in the lattice spacing a
due to the Wilson term. One can account for the latter following the Symanzik improvement pro-
gramme. In the scaling regime the lattice action can be approximated by its continuum counterpart
supplemented by corrections proportional to positive powers of the lattice spacing,

SQCD
(
a(β )

)
= Scontinuum +aS1 +a2S2 + . . . . (1.1)

The so-called O(a)-improvement programme for Wilson fermions consists of adding to SQCD ir-
relevant operators entering S1 with numerical coefficients chosen in such a way as to remove the
entire contribution of that term. Improvement of the action SQCD requires knowledge of the cSW

coefficient and, for non-vanishing quark masses, also of bg and bm. Full order a improvement re-
quires not only to improve the action but also operators. Taking the example of the non-singlet
axial current, we usually define

A jk,R
µ (x) = ZA

(
1+abAm jk +a3b̄Am

){
ψ̄ j(x)γµγ5ψk(x)+acA∂

sym
µ P jk(x)

}
(1.2)

Hence, for full O(a)-improvement of a non-singlet quark bilinear J, using massive Wilson fermions
one needs cSW, bg, bm, cJ , bJ , b̄J . The remaining cut-off effects vanish as a2.

In the present proceedings we summarize results obtained for the bJ and b̃J
1 improvement

coefficients. For more details we refer the Reader to Ref. [1]. We follow the proposal of Ref. [2] and
use coordinate space correlators to construct observables sensitive to bJ and b̃J . In particular, we
adapt the original suggestion to the case of the CLS ensembles with N f = 2+1 dynamical flavours
[3, 4] and implement several improvements and modifications. We present results for the flavour
non-singlet scalar, pseudoscalar, vector and axialvector currents. The CLS ensembles feature non-
perturbatively improved Wilson fermions and the tree-level Lüscher-Weisz gauge action. cSW was
estimated in [5], whereas cA in [6]. We simulate at the bare inverse coupling constant values
β = 3.4,3.46,3.55 and 3.7, which correspond to lattice spacings a ∈ [0.05,0.09] fm. The subset of
CLS ensembles used in the present study is presented in table 1.

For completeness we briefly introduce some notations. We denote quark mass averages as

m jk =
1
2
(m j +mk) , m j =

1
2a

(
1
κ j
− 1

κcrit

)
, m =

1
3
(ms +2m`) . (1.4)

with the subscripts j,k corresponding to different quark content: j,k = 1,2,3 = light, light,strange.
The light quark mass m` and the average quark mass m can be used to parameterize the mass
dependence of physical observables.

1Determining b̄J requires bg which is currently unavailable. Instead, we determine b̃J which is a combination of b̄J

and bg

b̃J(g2) = b̄J(g2)+
bg(g2)

N f

[
∂ lnZR

J (g
2,aµ)

∂g2 − γJ(g2)

4πβ (g2)

]
g2 . (1.3)

For practical purposes the knowledge of b̃J is sufficient. For a derivation of Eq. (1.3) and more details, see Section II of
Ref. [1].
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β name κl κs # conf. step
3.4 H101 0.136759 0.136759 100 40
3.4 H102 0.136865 0.136549339 100 40
3.4 H105 0.136970 0.13634079 103 20
3.4 H106 0.137016 0.136148704 57 20
3.4 H107 0.136946 0.136203165 49 20
3.4 C101 0.137030 0.136222041 59 40
3.4 C102 0.137051 0.136129063 48 40
3.4 rqcd17 0.1368650 0.1368650 150 40
3.4 rqcd19 0.13660 0.13660 50 40

3.46 S400 0.136984 0.136702387 83 40
3.55 N203 0.137080 0.136840284 74 40
3.7 J303 0.137123 0.1367546608 38 40

Table 1: List of CLS ensembles used in the study. For details see Ref. [3, 4]. The number of indepen-
dent measurements for each ensemble is given in column 5. "step" denotes the spacing in MDU between
consecutive measurements. Such spacing guarantees that autocorrelations are negligible.

Our primary observable are the connected Euclidean current-current correlation functions. We
denote their continuum, renormalized in the scheme R at a scale µ , (where, for example, R = MS),
versions as

GR
J( jk)(x,m`,ms; µ) =

〈
Ω

∣∣∣T J( jk)(x)J( jk)
(0)
∣∣∣Ω
〉R

. (1.5)

2. Method

We start with the following two observations valid for correlation functions at distances x2�
1/Λ2

QCD when m2 < Λ2
QCD [2, 1].

1. The continuum correlation function differs from that of the massless case by mass dependent
terms

GR
J( jk)(x,m`,ms; µ) =GR

J( jk)(x,0,0; µ)×
[
1+O

(
m2x2,m2〈FF〉x6,m〈ψψ〉x4,m〈ψσFψ〉x6)] ,

(2.1)

2. The continuum flavour non-singlet Green function GR above can be related to the corre-
sponding Green function G obtained in the lattice scheme at a lattice spacing a = a(g2) as
follows:

GR
J( jk)(x,m`,ms; µ) =

(
ZR

J
)2
(g2,aµ)×

(
1+2bJam jk +6b̃Jam

)
GJ( jk),I (n,am jk,am;g2) ,

(2.2)

Note that we replaced ZR(g̃2) by ZR(g2) and absorbed the difference, replacing b̄J by b̃J , see
Eq. (1.3). Hence, by constructing a ratio of two correlation functions with identical Dirac structure
we can eliminate the massless correlation function on the right-hand side of Eq. (2.1) and the mass
independent renormalization constant in Eq. (2.2). We arrive at the following expression
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GJ( jk)

(
n,am(ρ)

jk ,am(ρ);g2
)

GJ(rs)

(
n,am(σ)

rs ,am(σ);g2
) = 1+2bJa

(
m(σ)

rs −m(ρ)
jk

)
+6b̃Ja

(
m(σ)−m(ρ)

)
+O

(
a2,x2) , (2.3)

where the ρ and σ indices distinguish different points in the κ`− κs parameter plane. We now
define two observables which are directly proportional to the improvement coefficients we are
after. In the first case we choose one ensemble away from the symmetric line, i.e. m` 6= ms, and
measure two correlation functions: one with two light quarks and the second with a light and a
strange quark. Their ratio is approximated by

RJ(x,m
(ρ)
12 ,m(ρ)

13 )≡
GJ(12)

(
n,am(ρ)

12 ,am(ρ);g2
)

GJ(13)

(
n,am(ρ)

13 ,am(ρ);g2
) = 1+2bJa(m(ρ)

13 −m(ρ)
12 ) = 1+2bJaδm (2.4)

Note that κcrit as well as b̃J cancel. For the second observable we choose two ensembles on the
symmetric line and we define R̃J(x,δm = m(σ)−m(ρ))

R̃J(x,m(σ),m(ρ))≡ GJ(12)

(
n,am(ρ),am(ρ);g2

)

GJ(12)

(
n,am(σ),am(σ);g2

) = 1+(2bJ +6b̃J)a(m(σ)−m(ρ)) = R̃J(x,δm),

(2.5)
which gives us sensitivity to b̃J once bJ is known. Again, no knowledge of κcrit is needed. Figure 1
shows RJ(x,δm) and R̃J(x,δm) as functions of δm and δm for a given vector n. A linear behaviour
of the data confirms the validity of expressions Eq. (2.4) and Eq. (2.5).
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Figure 1: Example of data in the pseudoscalar channel for a given vector n. The quantity plotted is RP−1
for n = (0,1,1,1) on the left and R̃P− 1 for n = (0,1,2,2) on the right against quark mass difference. A
linear dependence is expected, with a slope corresponding to the improvement coefficient bP and b̄P.

3. Short and medium distance corrections

The observables RJ(x,δm) and R̃J(x,δm) are affected by undesired cut-off effects which are
mostly visible at short distances (< 0.2 fm) as well as mass dependent non-perturbative corrections
relevant at medium distances (≈ 0.3− 0.4 fm). We compensate for both of them at tree-level
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perturbation theory and propose improved observables BJ(x,δm) and B̃J(x,δm) with these effects
subtracted.

Figure 2 shows the observable RJ(x,δm) computed in tree-level lattice perturbation theory.
The continuum tree-level prediction is btree

J = 1, hence all deviations from that value on figure 2
are due to non-leading lattice artifacts. Using these data we can construct a set of distances x for
which cut-off effects are minimal. Subsequently, we only consider vectors for which the tree-level
cut-off effects are smaller than 15%. The improved observables BJ and B̃J have these corrections
subtracted.
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Figure 2: Left panel: Observables RJ estimated in tree-level lattice perturbation theory plotted against the
expected continuum prediction btree

J = 1. In the analysis we use only vectors for which the tree-level cut-
off artifacts are smaller than 15%, i.e. which lie within the shaded band. Right panel: Data for bS for all
investigated vectors n for three ensembles: H102, S400 and N203. The shaded area corresponds to the
interval of x used in the fit which estimates the size of x6 corrections.

At medium distances we can predict the behaviour of our data as a function of x using the
Operator Product Expansion. For the ratio of correlation functions one gets

GJ(12)(x)
GJ(34)(x)

= 1+(AJ
12−AJ

34)x
2 +
[(

AJ
34
)2−AJ

12AJ
34 +BJ

12−BJ
34

]
x4 + · · · , (3.1)

with the mass dependent coefficients

AJ
jk =−

1
4

(
m2

j +m2
k +

m jmk

sJ

)
, BJ

jk =
π2

32N
〈FF〉+

m2
jm

2
k

16
+

π2

8N
2+ sJ

sJ
(m j +mk)〈ψψ〉 .

(3.2)
where sJ are constants and depend on the Dirac structure, sS = 1 = −sP and sA = 1

2 = −sV .
Knowing the explicit form of these corrections and using the Gell-Mann-Oakes-Renner relation
(m j +mk)〈ψ̄ψ〉 = −F2

0 M2
jk, where M jk denotes the mass of a pseudoscalar meson composed of

(anti)quarks of masses m j and mk and the pion decay constant in the N f = 3 chiral limit reads
F0 = 86.5(1.2) MeV [7, 8], we correct our observables RJ and R̃J by subtracting the leading con-
tinuum corrections.
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Hence, we arrive at the improved observable

BJ(x,δm)≡
[

RJ(x,δm)−Rtree
J (x,δm) +

π2

8N
2+ sJ

sJ

(
M2

π −M2
K
)

F2
0 x4
]
×
(

1
κs
− 1

κ`

)−1

= bJ +O(x6)+O(g2a2)+ · · · , (3.3)

and a similar expression for B̃J(x,δm).
Figure 2 shows the numerical data for the improved observable in the scalar channel BS. We

see that the data are rather flat up until ≈ 0.3 fm. The remaining curvature is due to higher order
corrections. We take them into account by attributing a systematic uncertainty to our results which
we define as the size of the contribution proportional to x6. We estimate the latter by fitting to a
function containing a term x6 within an interval of 0.15−0.4 fm.

Results in the scalar channel from all investigated ensembles are summarized in figure 3. We
note that within one value of the coupling constant the results are compatible within their errors
and that the value of the bS improvement coefficient systematically decreases with a decreasing
coupling constant, i.e. increasing β .
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Figure 3: Left panel: Results for bS for all ensembles. Blue error bars correspond to the total uncer-
tainty with the combined systematic uncertainties of a 20% uncertainty of the Wilson coefficient of the
non-perturbative x4 correction and an estimate of the size of order x6 corrections. Red error bars correspond
to the statistical uncertainty only. Final results are computed using the vector n = (0,1,2,2) and all its sym-
metric equivalents. Right panel: Rational parametrization of bS as a function of the coupling constant g2.
The dashed line is the one-loop perturbative expectation.

4. Rational parameterizations

We present our final results for bJ in the form of rational parameterizations. We choose four
ensembles: H102, S400, N203 and J303 at four values of the coupling constant and perform a fit
with the following ansatz bJ(g2) = 1+ bone-loop

J g2
(
1+ γJg2

)(
1+ δJg2

)−1
, with δV = 0. The final

expressions read

bS(g2) = 1+0.11444(1)CFg2(1−0.439(50)g2)(1−0.535(14)g2)−1
, (4.1)

bP(g2) = 1+0.0890(1)CFg2(1−0.354(54)g2)(1−0.540(11)g2)−1
, (4.2)

bV (g2) = 1+0.0886(1)CFg2(1+0.596(111)g2), (4.3)

5



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
1
9
0

Non-perturbative determination of improvement coefficients Piotr Korcyl

bA(g2) = 1+0.0881(1)CFg2(1−0.523(33)g2)(1−0.554(10)g2)−1
, (4.4)

and the fit for the case of the scalar channel is shown in figure 3. The one-loop values of the
improvement coefficients for the discussed lattice action can be obtained from the results of Ref.[9].

5. b̃J improvement coefficients

At β = 3.4 several ensembles from the symmetric line are available. We used them to test
our method to extract the b̃J improvement coefficients. Since the ratio is composed of correlation
functions measured on two different ensembles the statistical noise does not cancel and the statistics
used so far yield very imprecise results:

b̃S = 2.0(1.3)(0.3), b̃P =−3.4(1.3)(0.6), b̃V =−0.1(0.4)(0.1), b̃A = 1.4(0.4)(0.9), (5.1)

the first uncertainty being systematic and the second statistical. Several ways are being tested in
order to improve the precision, including stochastic multiple point sources similar to the ones used
in Ref. [10] or the Truncated Solver Method of Ref. [11].

6. Conclusions

We implemented and tested a coordinate space method to determine improvement coefficients
accompanying quark mass dependent terms. The method is general and allows for the determi-
nation of improvement coefficients for all quark bilinears. With a negligible numerical effort we
can achieve a 5% – 10% precision on bJ . Improvement coefficients proportional to the trace of
the mass matrix are accessible, but need a better statistical precision. These promising results en-
courage further steps such as the determination of the improvement coefficients cJ or improvement
coefficients for singlet fermion bilinear operators, which are of relevance in studies of the structure
of nucleons, or of more complicated currents with derivatives.
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