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loop order, and extract the charm quark mass with uncertainty less than 1%. Using the temporal
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1. Introduction

Short-distance current correlators in QCD can be analyzed using perturbation theory, while
they can be directly calculated in lattice QCD. By matching them, one may determine the parame-
ters in the Standard Model. The charm quark mass is a good example, i.e. it can be extracted from
the short-distance regime by means of the moment method first proposed by the HPQCD-Karlsruhe
collaboration [1]. The method has also been used for the determination of the bottom quark mass
by the same group, and the precision has been improved [2]. More recently, we utilized the same
method but with a different lattice formulation, to determine the charm quark mass [3].

We use the lattice ensembles generated by the JLQCD collaboration with the Mobius domain-
wall fermion for 2+1 flavors of dynamical quarks. The lattices are relatively fine, i.e. a = 0.080−
0.055 fm, which allow us to control the discretization effects. In this talk, we mainly discuss a
test of this method using experimental data, as well as the main sources of systematic uncertainty,
while leaving the full description of this work in [3]. The same set of lattice ensembles have also
been used for the studies of heavy-light decay constant [4] and semileptonic decay form factors [5].

For the vector channel, the current correlator can be related to the e+e− cross section, or the
R ratio, using the optical theorem. By comparing lattice results with phenomenological analysis
obtained from experimental data, we may validate the lattice calculation. We demonstrate that
lattice data are consistent with experiments after taking the continuum limit.

For the determination of the charm quark mass, we use the pseudo-scalar channel, as it pro-
vides a more sensitive probe. Among other sources of systematic uncertainty, including those of
discretization effects and finite volume effect and so on, it turned out that the perturbative error is
the dominant source. We attempt to conservatively estimate the effect of perturbative error.

2. Moment of correlators

We calculate the correlators of the pseudo-scalar current j5 = iψ̄cγ5ψc and vector current jk =
ψ̄cγkψc composed of charm quark field ψc:

GPS(t) = a6 ∑
x
(amc)

2⟨0| j5(x, t) j5(0,0)|0⟩, (2.1)

GV (t) =
a6

3

3

∑
k=1

∑
x

Z2
V ⟨0| jk(x, t) jk(0,0)|0⟩, (2.2)

with a renormalization constant for the vector current ZV . We then construct the temporal moments

Gn = ∑
t

( t
a

)n
G(t),

for each channel with an even number n ≥ 4. Since the charmonim correlators G(t) are exponen-
tially suppressed in the long-distance regime, the moments are sensitive to the region of t ∼ n/M
depending on the charmonium (ηc or J/ψ) mass M.

The moments are related to the vacuum polarization functions ΠV (q2) and ΠPS(q2) as

(qµqν −q2gµν)ΠV (q2) = i
∫

d4xeiqx⟨0| jµ(x) jν(0)|0⟩, (2.3)

q2ΠPS(q2) = i
∫

d4xeiqx⟨0| j5(x) j5(0)|0⟩. (2.4)
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through the derivatives with respect to q2:

a2kGV
2k+2 =

12π2Q2
f

k!

(
∂

∂q2

)k (
ΠV (q2)

)
|q2=0. (2.5)

The vector channel can be related to the experimentally observed e+e− cross section, i.e. the R-ratio
R(s)≡ σe+e−→cc̄(s)/σe+e−→µ+µ−(s) using the optical theorem:

12π2Q2
f

k!

(
∂

∂q2

)k (
ΠV (q2)

)
|q2=Q2

0
≡
∫ ∞

s0

ds
1

(s−Q2
0)

k+1 R(s). (2.6)

Here Q0 is an arbitrally number and often set to Q0 = 0. We use this relation between the lattice
calculation and experimental data for consistency check of the lattice calculation.

The temporal moments for sufficiently small n can be calculated perturbatively since they are
defined in the short-distance regime. The valuum polarization functions are represented with a
dimensionless parameter z ≡ q2/2m2

c(µ) as

Π(q2) =
3

16π2

∞

∑
k=−1

Ckzk, (2.7)

and the coefficients Ck are perturbatively calculated up to O(α3
s ) in the MS scheme [6, 7, 8], and

written in terms of lm ≡ log(m2
c(µ)/µ2) and αs(µ). Since we use this perturbative expansion to

extract the charm quark mass and the strong coupling constant, the uncertainty of O(α4
s ) remains.

Practically, we redefine the moments to reduce the uncertainty from the scale setting as well
as that from the leading discretization effect:

RPS
n =

amηc

2am̃c

(
GPS

n

GPS
n

(0)

)1/(n−4)

for n ≥ 6. (2.8)

RV
n =

amJ/ψ

2am̃c

(
GV

n

GV (0)
n

)1/(n−2)

for n ≥ 4. (2.9)

with the pole mass of the domain-wall fermion m̃c and the tree level moment G(0)
n . We will use

these reduced moments to test the consistency with experimental data, and to determine the quark
mass and strong coupling constant.

3. Consistency with experimental data

Before discussing the extraction of the charm quark mass, we try to validate the lattice calcu-
lation using the vector channel together with the experimental data available for the R-ratio.

Our lattice ensembles are generated with 2+ 1 flavors of Moebius domain-wall fermion at
lattice spacings a = 0.080, 0.055, and 0.044 fm. The spacial size L/a is 32, 48, and 64 respectively,
and the temporal size T/a is twice as long as L/a. Three defferent values of bare charm quark mass
are taken to calculate charmonium correletors, and they are interpolated to the physical point such
that the mass of spin-averaged 1S states are reproduced. The details of the ensembles are in [4].
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Figure 1: Reduced moments for the vector current RV
n (n = 6 (pluses) and 8 (squares)) and their contin-

uum extrapolation. Data are plotted after correcting for the finite light quark mass effects by multiplying
1/(1+ f1(mu +md +ms)/mc) and for the missing charm quark loop effect rV

n (n f = 4)/rV
n (n f = 3). Phe-

nomenological estimates of the corresponding quantities are plotted on the left: Dehnadi et al. [10] (filled
circle), Kuhn et al. [11] (open circle).

The renormalization constant ZV is determined non-perturbatively from the light hadron correlators
as 0.955(9), 0.964(6), and 0.970(5) for β = 4.17, 4.35, and 4.47, respectively [9].

We extrapolate the data for RV
n to the continuum limit using an ansatz

RV
n = RV

n (0)
(
1+ c1(amc)

2)×(1+ f1
mu +md +ms

mc

)
, (3.1)

with three free parameters RV
n (0), c1, and f1. Higher order terms of a and ml are confirmed to be

insignificant from the data. We consider five different sources of uncertainty. They are statistical
error, finite volume effect, discretization error, uncertainty of the renormalization constant, and
dynamical charm quark correction. Since we use 2+1 flavor ensembles in the lattice calculation,
the dynamical charm quark effect is included using perturbation theory [6, 7, 8].

The result is shown in Figure 1. The “experimental data” are taken from [10, 11], which are
obtained by integrating the experimentally observed R(s) with appropriate weight functions. The
lattice results show only mild a dependence for n = 6 and 8, and their continuum limit is consistent
with the corresponding “experimental data”. The dominant source of error is the renormalization
constant, and the combined error is about 1%, which is about the same in size with the phenomeno-
logical estimate. This agreement gives confidence about the validity of our lattice calculation.

4. Charm quark mass extraction

We use the reduced moment Rn of the pseudo-scalar channel to determine the charm quark
mass. The continuum extrapolation of Rn is shown in Figure 2 with statistical error. We assume the
extrapolation form to be the same as that of RV

n (3.1) with free parameters Rn(0), c1, and f1, and use
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Figure 2: Continuum extrapolation of Rn(a). Data points correspond to R6, R8, R10, R12, and R14 from top
to bottom. We plot the mean of the extrapolation with and without coarsest lattice as the extrapolated values,
and estimate it deviation as the O(a4) error.

the perturbative factor rn(n f = 4)/rn(n f = 3) to correct for the charm sea quark contribution. Our
extrapolated lattice data are sufficiently precise since they have small lattice spacing a dependence.

Now we consider the systematic error from the perturbative expansion for the reduced mo-
ments rn, which are known up to O(α3

s ) [6, 7, 8], and the leading uncertainty is at the order of α4
s .

Such error from unknown higher order terms can be estimated by residual µ dependence of the per-
turbative result, since the physical quantity should be independent of the renormalization scale µ .
We choose the range µ = 2−4 GeV to estimate this source of error. Below the lower limit the per-
turbative result rapidly varies, which suggests that the perturbative expansion is no longer reliable.
In the moment method, the combination rn(αs(µ),mc(µ))/mc(µ) has to be µ independent.

We generalize this procedure for the scales to define αs(µ) and of mc(µ) separately. Namely,
we use the perturbative expansion written in terms of αs(µα) and mc(µm) with µα ̸= µm [12]. We
estimate the truncation error using the range µα ∈ µm ± 1 GeV with 2 GeV ≤ min{µα ,µm} and
max{µα ,µm} ≤ 4 GeV. By allowing the possibility of µα ̸= µm, the estimated error becomes twice
as large. We adopt this choice to be conservative.

The contribution from the gluon condensate, which appears in the operator product expansion
of rn, is another source of error. It can be written as

gGG
2k =

⟨(αs/π)G2
µν⟩

2mc(µ)

(
al +

αs

π
cl

)
, (4.1)

where the coefficients al and cl are known up to O(α2
s ) [13]. The gluon condensate ⟨(αs/π)G2

µν⟩
is not well determined phonomenologically, e.g. ⟨(αs/π)G2

µν⟩ = 0.006± 0.0012 GeV4 from a τ
dacay analysis [14]. In our analysis, we treat ⟨(αs/π)G2

µν⟩ as a free parameter and determine from
the lattice data together with mc(µ) and αs(µ).

In the deffinition of the moments, there appears a meson mass mηc , which is an input parame-
ter. Because our lattice calculation does not contain the electromagnetic and disconnected diagram
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pert t1/2
0 stat O(a4) vol mexp

ηc disc EM
mc(µ) [GeV] 1.0033(96) (77) (49) (4) (30) (4) (3) (4) (6)

αs(µ) 0.2528(127) (120) (32) (2) (26) (1) (0) (0) (1)
<(α/π)G2>

m4 −0.0006(78) (68) (29) (3) (22) (3) (2) (3) (5)

Table 1: Numerical results for mc(µ) (top panel), αs(µ) (mid panel) and <(αs/π)G2>
m4 (bottom panel) at µ

= 3 GeV. The results are listed for choices of three input quantities out of R8, R10 and R6/R8. In addition
to the central values with combined errors, the breakdown of the error is presented. They are the estimated
errors from the truncation of perturbative expansion, the input value of t1/2

0 , statistical, discretization error of
O(a4) (or O(αsa2)), finite volume, experimental data for mexp

ηc , disconnected contribution, electromagnetic
effect, in the order given. The total error is estimated by adding the individual errors in quadrature.

effects, we need to modify the mass of ηc to take account of their effects. The electromagnetic
effects is expected to reduce the meson mass by 2.6(1.3) MeV [15], and the disconected contribu-
tion also reduces the mass by 2.4(8) MeV according to a lattice study [16]. We therefore use the
modified mηc as an input, mexp

ηc = 2983.6(0.7)+2.4(0.8)Disc.+2.6(1.3)EM MeV.
We include all of these error estimates. Namely, statistical error, discretization effect of O(a4),

finite volume, experimental value of mexp
ηc , disconnected and electromagnetic effect. Table 1 lists

the result of charm quark mass mc(µ) and strong coupling αs(µ) as well as the gluon condensate
⟨(αs/π)G2

µν⟩ in the MS scheme at µ = 3 GeV. Figure 3 shows the constraints on mc and αs from
the moments and their ratio. Since each moment puts different constraints on these parameters,
charm quark mass mc(µ) and coupling constant αs(µ) can be determined. Roughly speaking, the
individual moment is more sensitive to mc(µ) while the ratio R6/R8 has a sensitivity to αs(µ).

In the final result, the dominant source of the error comes from the truncation of perturbative
expansion for all quantities. The next largest is the discretization effect of O(a4) as well as the
uncertainty of lattice scale determined with the Wilson flow t1/2

0 . It means that in order to achieve
more precise determination with this method, we need yet another order of perturbative expansion.

The lattice QCD simulation has been performed on Blue Gene/Q supercomputer at the High
Energy Accelerator Research Organization (KEK) under the Large Scale Simulation Program
(Nos. 13/14-4, 14/15-10, 15/16-09). This work is supported in part by the Grant-in-Aid of the
Japanese Ministry of Education (No. 25800147, 26247043, 26400259).
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