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We report on the determination of the renormalization factors of quark bilinears which are re-
quired among others in order to determine the nucleon scalar and tensor charges from the CLS
Nf = 2 configurations. Working in the RI’-MOM scheme, we eliminate all lattice artifacts at
one-loop order using a combination of analytical results near the continuum limit and numerical
calculations in automated lattice perturbation theory. The latter will allow for a ready gener-
alization to the renormalization factors required for the average momentum fraction and other
operators beyond local bilinears.
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1. Introduction

The axial, scalar and tensor charges of the nucleon (and the associated form factors) encode
important information about nucleon structure. As in particular the scalar and tensor charges are
hard to probe experimentally, good theoretical predictions are needed.

Since the charges are matrix elements of composite operators, they need to be renormal-
ized, and it has long been known that perturbative renormalization may not be sufficient; non-
perturbative renormalization (NPR) is required, but elaborate techniques must be applied to obtain
reliable estimates. This is even more relevant for matrix elements of derivative operators, such as
are needed to obtain the average momentum fraction 〈x〉 and related observables. Here, we demon-
strate the usefulness of automated lattice perturbation theory in subtracting lattice artifacts using
quark bilinears (whose matrix elements yield the nucleon charges) as a straightforward example.

2. NPR setup

We use the RI’-MOM scheme [1] in Landau gauge, with renormalization conditions

trCD

[
S−1

R (p)Sfree(p)
]∣∣

p2=µ2 = 12, (2.1)

trCD

[
〈p|OR|p〉〈p|O0|p〉−1

free

]∣∣
p2=µ2 = 12. (2.2)

Under the assumption that fields and operators renormalize multiplicatively, SR(p) = ZqS0(p),
OR = ZOO0, these conditions imply that the renormalization factors are given by

Zq =
1
12

trCD

[
S−1

0 (p)Sfree(p)
]∣∣∣∣

p2=µ2
, (2.3)

ZO =
12Zq

trCD

[
ΛO(p)Λfree

O (p)−1
]∣∣

p2=µ2

, (2.4)

where the bare vertex function ΛO is given in terms of the bare Green’s functions GO and S0 through

ΛO(p) = S−1
0 (p)GO(p)S−1

0 (p) . (2.5)

The latter are determined using momentum sources [2] to compute position-momentum propaga-
tors S(y|p) = D−1

yx eip·x, whence

S0(p) =
〈

1
V ∑

x
e−ip·xS(x|p)

〉
, (2.6)

and for a local bilinear operator O(x) = u(x)ΓOd(x),

GO(p) =
〈

1
V ∑

x
γ5S(x|p)†

γ5ΓOS(x|p)
〉
. (2.7)

We employ the Nf = 2 CLS ensembles listed in Table 1, using N = 20 configurations from
each ensemble, which we fix to Landau gauge by minimizing

W (U) = ∑
x

∑
µ

tr
[
U†

µ(x)+Uµ(x)
]

(2.8)

using a Fourier-accelerated CG algorithm [3].
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Name β a [fm] Volume mπ [MeV]
A3 5.2 0.0755 64×323 473
A4 364
A5 316
B6 96×483 268
E5 5.3 0.0658 64×323 457
F6 96×483 324
F7 277
G8 128×643 193
N5 5.5 0.0486 96×483 429
N6 331
O7 128×643 261

Table 1: List of CLS ensembles used in this study, giving the ensemble name, bare inverse coupling β =

6/g2
0, lattice spacing, spacetime volume and pion mass.

To reduce O(4) violation effects, we use diagonal momenta of the form p= (µ,µ,µ,µ), where
twisted boundary conditions ψ(x+Lνeν) = eiθν ψ(x) are employed to allow access to intermediate
momenta. A further reduction of O(4) violating effects is achieved by averaging over H(4) irreps `
[4], corresponding to replacing

trCD

[
ΛO(p)Λfree

O (p)
]
7→ 1

K

K

∑
`=1

trCD

[
Λ
`
O(p)Λ`,free

O (p)
]

(2.9)

in eq. (2.4).
Given the values of the renormalization constants at our chosen momenta, we interpolate in

µ on each ensemble, using cubic splines, in order to get Z(a,mπ ; µ) for arbitrary renormalization
scales µ , which we then use to chirally extrapolate for a set of values of µ at each value of β , using
a linear ansatz in (amπ)

2, to obtain Z(a,µ) = Z(a,0; µ).
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Figure 1: left: example of cubic-spline interpolation in µ; right: example of the chiral extrapolation.
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To convert from the RI’-MOM scheme to the more usual MS-scheme, we use the three-
loop continuum perturbation theory results of [5]. In addition, we determine the Renormalization
Group Independent (RGI) values of the renormalization factors using the three-loop MS β - and
γ-functions [6] in

ZRGI(a) = ∆ZMS(µ)ZMS
RI′−MOM(µ)ZRI′−MOM(a,µ). (2.10)

3. Perturbative subtraction

By definition, the RGI renormalization factors should be independent of the renormalization
scale µ . Since the running is only removed perturbatively, we expect deviations at small µ , where
the running coupling becomes large. On the other hand, any µ-dependence at large µ , where the
running coupling is small, is indicative of lattice artifacts, which in practice can be quite sizeable.

To eliminate at least a large portion of lattice artifacts, the use of perturbation theory has been
proposed in ref. [7], and further explored in refs. [8, 9]; here we follow an approach very similar to
that of ref. [4], subtracting all lattice artifacts at O(g2) by perturbatively expanding

ZRI′−MOM(µ,a) = 1+g2F(µ,a) = 1+g2 [
γ0 log(µa)+C+O(µ2a2)

]
, (3.1)

where γ0 is the analytically-known anomalous dimension. The lattice artifacts are then given by

D(µ,a) = g2 [F(µ,a)− (γ0 log(µa)+C)] ,

where in many cases C is known analytically, or else can be obtained using a fit to F(µ,a)−
γ0 log(µa) in the limit a→ 0.

To evaluate the required Feynman diagrams in lattice perturbation theory, we employ the
HiPPy/HPsrc packages [10], which separate the (complicated, action-dependent) Feynman rules
from the (action-independent) Feynman diagrams: the diagrams are coded once and for all in an
operator- and action-independent fashion, and can then be used to calculate with in principle arbi-
trary operators and lattice actions. The automated derivation of the action- and operator-dependent
Feynman rules is performed in a separate step.
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Figure 2: left: the subtraction functions D(µ,a) for a number of different renormalization constants;
right: an example of an unsubtracted and the corresponding subtracted renormalization constant

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
1
9
4

NPR of Nucleon Charges with Automated Perturbative Subtraction G. von Hippel

To combine the perturbative and non-perturbative results, we need to make a choice for the
coupling. The bare lattice coupling is known to be generally a poor choice, and we employ the
boosted coupling [11] instead. As can be seen from Fig. 2, this results in a cancellation of most of
the lattice artifacts seen in the RGI renormalization constants.

4. Results

4.1 Renormalization constants

To obtain our final results for the RGI renormalization constants ZRGI(β ), we account for
having performed the continuum matching only to three-loop order, and for the remaining lattice
artifacts, by fitting with the ansatz

ZRGI,sub(a,µ) = ZRGI(β )

{
1+d1

[
gMS(µ)

]8
}
+d2(β )(aµ)2

∆ZMS(µ)ZMS
RI′−MOM(µ),

where d1 is a continuum quantity and hence independent of the bare lattice coupling β , and we
therefore perform a combined four-parameter fit accross all lattice spacings. Ideally, the fit window
should fulfil ΛMS � µ � a−1 to keep both higher-order perturbative effects and lattice artifacts
small. Since we cannot realistically fulfil both of those inequalities at the same time, we have
chosen to take the lower end of the window at µmin = 3 GeV, but allow renormalization scales as
large as µmax = 2.75a−1 in the fit, because we rely on the perturbative subtraction of the leading
artifacts. The resulting fits are shown in Fig. 3.

To study the systematic errors of final result we have varied a number of procedure parameters:

• the form of the chiral extrapolation (quadratic instead of linear, or including a e−mπ L finite-
volume term),

• the value of aΛMS used, and

• the fitting window for the final fit.

To be conservative, we add the spreads of the values obtained with each of these variations in
quadrature to estimate our total systematic error. Preliminary values of the renormalization con-
stants, including their systematic error estimates, are shown in Table 2.

Table 2: Preliminary results for the RGI renormalization constants of local bilinear operators; the errors
shown are statistical and systematic (cf. the text for details on how systematics are estimated).

β ZRGI
A ZRGI

V ZRGI
S ZRGI

T

5.2 0.7565(2)(7) 0.7323(2)(5) 0.473(2)(17) 0.9036(2)(33)
5.3 0.7676(1)(10) 0.7447(1)(22) 0.469(2)(12) 0.9192(1)(25)
5.5 0.7867(1)(23) 0.7645(1)(50) 0.459(1)(11) 0.9500(1)(28)
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Figure 3: Final fits to the perturbatively subtracted RGI renormalization constants (clockwise from top left:
axial, vector, scalar and tensor)

4.2 Nucleon tensor charge

As a sample application of our renormalization constants, we show some preliminary results
for the nucleon tensor charge from the Nf = 2 CLS ensembles in Fig. 4. After being appropriately
renormalized, the tensor charge shows no appreciable lattice-spacing dependence, but appears to
be strongly pion-mass dependent, leading to a rather low value at the physical point.

A separate higher-statistics calculation [12] using many of the same ensembles, but employing
different measurement and analysis techniques for the bare matrix elements, on the other hand,
appears to show hardly any pion-mass dependence. However, we should caution that the latter
analysis did not fully account for excited-state effects, and that a comprehensive analysis is still
ongoing.

5. Summary

We have implemented non-perturbative renormalization for local quark bilinears using the RI’-
MOM scheme on the CLS Nf = 2 ensembles. The use of automated perturbation theory in carrying
out the perturbative subtraction of lattice artifacts allows for an easy adaptation to different opera-
tors and actions. In particular, we intend to treat the derivative operators required for measuring 〈x〉
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Figure 4: left: the tensor charge of the nucleon as a function of the pion mass, with a linear extrapolation
to the physical point (preliminary); right: using higher statistics, the pion-mass dependence disappears (but
see the text for caveats).

and related observables in much the same way. Moreover, the application to the Nf = 2+ 1 CLS
ensembles (using the existing ensembles with periodic boundary conditions [13] for the NPR part)
poses no major difficulties. Results for nucleon charges (and form factors) are forthcoming [14].
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