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1. Discussion

Investigating via lattice field theory methods quantum string worldsheets relevant in AdS/CFT
has recently become a concrete possibility [2–4] 1. The model under study is the AdS-lightcone
gauge-fixed (Type IIB Green-Schwarz) superstring action [6] describing fluctuations around the
classical string solution ending, at the AdS boundary, on a lightlike cusped Wilson loop [7]. It
consists of a highly non-trivial two-dimensional quantum field theory with quartic fermionic in-
teractions; its perturbative analysis provides, according to AdS/CFT, strong coupling information
on the behaviour of several important observables in the dual gauge theory and has been explicitly
performed up to two loops in sigma-model semiclassical quantization [7].

In [2–4] lattice simulations employing a Rational Hybrid Monte Carlo (RHMC) algorithm
were performed in order to measure the vacuum expectation value of the action – from which the
cusp anomaly of N = 4 super Yang-Mills [2–4] can be extracted – and the mass [3, 4] of the
two AdS excitations transverse to the relevant null cusp classical string solution. For both these
observables it is possible to compare the results with the behavior predicted via integrability [8]
at various values of the coupling g =

√
λ/(4π). At large g, i.e. the perturbative regime of the

sigma-model, for both the observables a good agreement was found. At lower values of g, after a
non-perturbative subtraction of quadratic divergences, a complex phase in the fermion determinant
– in fact, a Pfaffian – was detected [3, 4]. There, it was also concluded that a strong sign problem
in simulations would appear for values of the (lattice) coupling g≤ 5.

The origin of such complex phase is a non-hermitian piece in the Lagrangian, a specific
Yukawa-like term resulting from the standard linearization of a quartic fermionic interaction which
appears originally as a “repulsive” potential [4]. In this contribution we present a new auxiliary
field representation of the four-fermi term, following an algebraic manipulation of the original
fermionic Lagrangian inspired by [9] (see also [10]). The result is a Lagrangian linear in fermions
which is fully hermitian, and a quadratic fermionic operator OF which – in presence or not of
Wilson-like terms – is antisymmetric and obeys a constraint reminiscent of the “γ5-hermiticity” in
lattice QCD. These two properties ensure that detOF is real and non-negative, from which a real
Pfaffian (PfOF)

2 = detOF ≥ 0. Eliminating the complex phase allows us to eliminate a systematic
error in measurements 2. As a sign ambiguity remain in its definition, PfOF =±√detOF , the non
definite positive Pfaffian can not be directly simulated using a (rational) hybrid Monte Carlo algo-
rithm, but only upon replacement PfOF → det(O†

FOF)
1
4 and a reweighting procedure which can

potentially break down if the sign ambiguity is severe. Below, after presenting the details of the
new linearization, we show numerically some relevant features of the spectrum of the new quadratic
fermionic operator. The origin of the sign ambiguity appears to be related to the Yukawa-like terms,
this time including those present in the original Lagrangian (before linearization). Also, one may
identify the region of parameter space where no sign flips can occur, and that therefore cannot be
affected by a sign problem. As the latter occurs at g ∼ 2 and lower, this leaves the possibility of
“safe” measurements at e.g. g = 10, where features of the non-perturbative regime appear to be
detected by (previous [4] and) current [1] simulations. The measurements of relevant observables
in this novel setup are discussed in the forthcoming [1].

2. Linearization

The euclidean superstring action in AdS-lightcone gauge-fixing [6] describing quantum fluc-

1For lattice investigations in other models relevant in AdS/CFT see e.g. [5].
2In order to treat it via standard reweighting, the phase should be calculated explicitly. As it is highly non trivial

to evaluate efficiently complex determinants for arbitrarily big matrices, in [4] this was done only for small lattices, i.e.
small values of lattice points N. Observing that the reweighting had no effect on the central value of the observables
under study, the phase was omitted from the simulations in order to consistently take the continuum limit (N→ ∞), and
in absence of data for larger lattices the possible systematic error related to this procedure was not assessed.
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tuations around the null-cusp background in AdS5×S5 reads [7]

Scusp = g
∫

dtds
{
|∂tx+ 1

2 x|2 + 1
z4 |∂sx− 1

2 x|2 +
(

∂tzM + 1
2 zM + i

z2 zNηi
(
ρMN

)i
j η j
)2

+
1
z4

(
∂szM− 1

2 zM
)2

+ i
(
θ

i
∂tθi +η

i
∂tηi +θi∂tθ

i +ηi∂tη
i)− 1

z2

(
η iηi

)2 (2.1)

+2i
[

1
z3 zMη i

(
ρM
)

i j

(
∂sθ

j− 1
2 θ j− i

z η j
(
∂sx− 1

2 x
))

+ 1
z3 zMηi(ρ

†
M)i j

(
∂sθ j− 1

2 θ j +
i
z η j
(
∂sx− 1

2 x
)∗)]}

where x,x∗ are two bosonic fields transverse to the subspace AdS3 of the classical solution and
zM (M = 1, · · · ,6) are the bosonic fileds of the AdS5× S5 spacetime in Poincaré patch, with z =√

zMzM. The Graßmann-odd fields θi,ηi, i = 1,2,3,4 are complex variables (no Lorentz spinor
indices appear), such that θ i = (θi)

†, η i = (ηi)
† and transforming in the fundamental representation

of the SU(4) R-symmetry group. The matrices ρM
i j are the off-diagonal blocks of SO(6) Dirac

matrices γM in chiral representation, and (ρMN) j
i = (ρ [Mρ†N]) j

i are the SO(6) generators. In the
action (2.1) a massive parameter (∼ P+) is missing, which we restore below in (2.11) defining it
as m.

As standard, to take into account the fermionic contribution in the case of higher-order interac-
tions one linearizes the corresponding Lagrangian and then formally integrates out the Graßmann-
odd fields letting their determinant - here, a Pfaffian - to enter the Boltzmann weight of each con-
figuration through re-exponentiation∫

DΨ e−
∫

dtdsΨT OFΨ = PfOF −→ (detOF O†
F)

1
4 =

∫
Dξ Dξ̄ e−

∫
dtds ξ̄ (OF O†

F )
− 1

4 ξ . (2.2)

Here, we focus on the part of the Lagrangian in (2.1) which is quartic in fermion

L4 =
1
z2

[
−(η2)2 +

(
iηi(ρ

MN)i
jn

N
η

j
)2
]

(2.3)

where nM = zM

z . Notice the plus sign in front of the second term in (2.3), which squares an hermitian

bilinear (iηiρ
MNi

jη
j)† = iη j ρMN j

i η i [4]. Then the standard Hubbard-Stratonovich transforma-
tion

exp
{
−g

∫
dtds

[
− 1

z2

(
η iηi

)2
+
(

i
z2 zNηiρ

MNi
jη

j
)2]
} (2.4)

∼
∫

DφDφ
M exp

{
−g

∫
dtds [1

2 φ 2 +
√

2
z φ η2 + 1

2(φM)2− i
√

2
z2 φ MzN

(
iηiρ

MNi
jη

j
)
]
}

generates a non-hermitian term, the last one above, resulting in a complex-valued Pfaffian for the
fermionic operator. Here we provide a solution to this problem by rewriting the Lagrangian (2.3)
in a suitable form. The procedure is inspired by [9], where a simpler action with SO(4) four-
fermion terms in three dimensions was considered (see also the four-dimensional SU(4) coun-
terpart in [10]). The Lagrangian (2.3) is invariant under SU(4)×U(1) transformations and this
requires a generalization of [9]. Let us start by eliminating the matrices ρMN from the second term
of (2.3) in favour of ρM. After some ρ-matrices manipulations we get

L4 =
1
z2

(
−4(η2)2 +2

∣∣ηi(ρ
N)iknNηk

∣∣2) (2.5)

where the plus sign in front of the second term still prevents a real Pfaffian after the Hubbard-
Stratonovich transformation. We then define a duality transformation, reminiscent of the standard

3
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Hodge duality, but adapted to our particular case. Given Σi
j ≡ ηiη

j the dual matrix Σ̃ j
i is defined

by

Σ̃ j
i = nNnL(ρ

N)ik(ρL) jlΣk
l (2.6)

Notice that ˜̃
Σ = Σ and Σi

j ≡ (Σi
j)† = Σ j

i. One can then easily rewrite the quartic Lagrangian as

L4 =
2
z2 Tr

(
ΣΣ+ Σ̃Σ̃−ΣΣ̃

)
(2.7)

where the trace is over SU(4) fundamental indices. Although we split the first two terms in (2.7)
to exhibit the neutrality of the Lagrangian under duality transformation it is useful to keep in mind
that TrΣ̃Σ̃ = TrΣΣ. Since we want to write down a Lagrangian as the sum of two terms squared, it
is natural to introduce the self- and antiself-dual part of Σ

Σ± = Σ± Σ̃ (2.8)

such that Σ̃± =±Σ±. Now the crucial, though elementary fact that TrΣ±Σ± = 2Tr
(
ΣΣ±ΣΣ̃

)
gives

us some freedom in the choice of the sign in the Lagrangian since

L4 =
1
z2 Tr(4ΣΣ∓Σ±Σ±±2ΣΣ) . (2.9)

This last equation proves that the sign problem was an artefact of our naive linearization. Indeed
(2.9) provides two equivalent forms of the same action, one which would lead to a sign problem
and one which would not. Choosing the latter, i.e. the one involving Σ+, we get

L4 =
1
z2

(
−6(η2)2−Σ+

j
i Σ+

i
j

)
. (2.10)

In this form the Lagrangian is suitable for a Hubbard-Stratonovich transformation. In particular we
have

exp
{
−g

∫
dtds

[
− 1

z2

(
−6(η2)2−Σ+

j
i Σ+

i
j

)]}
∼
∫

DφDφ
M exp

{
−g

∫
dtds [12

z η2φ +6φ 2 + 2
z Σ+

i
jφ

j
i +φ i

jφ
j

i ]
}
,

where φ i
j can be thought of as a 4×4 complex hermitian matrix with 16 real degrees of freedom.

Therefore the new linearization proposed here introduces a total of 17 auxiliary fields.
The final form of the Lagrangian is then

L = |∂tx+
m
2

x|
2
+

1
z4

∣∣∂sx−
m
2

x|
2
+(∂tzM +

m
2

zM)2 +
1
z4 (∂szM− m

2
zM)2

+ 6φ
2 +φ

i
jφ

j
i +ψ

T OFψ (2.11)

with ψ ≡
(
θ i,θi,η

i,ηi
)

and

OF =


0 i∂t −iρM

(
∂s +

m
2

) zM

z3 0
i∂t 0 0 −iρ†

M

(
∂s +

m
2

) zM

z3

i zM

z3 ρM
(
∂s− m

2

)
0 2 zM

z4 ρM
(
∂sx−m x

2

)
i∂t −AT

0 i zM

z3 ρ
†
M

(
∂s− m

2

)
i∂t +A −2 zM

z4 ρ
†
M

(
∂sx∗−m x

2
∗)
 , (2.12)
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where

A =−6
z

φ +
1
z

φ̃ +
1
z3 ρ

∗
N φ̃

T
ρ

LzNzL + i
zN

z2 ρ
MN

∂tzM, (2.13)

φ̃ ≡
(
φ̃i j
)
≡
(
φ

i
j
)
. (2.14)

In the simpler cases of Refs. [9, 10], a suitable choice of Yukawa terms turns out to ensure a
definite positive Pfaffian, in connection with the relevant operator being real and antisymmetric
and a double degeneracy observed in the spectrum, see comments in the next section. Here, the
operator OF above is antisymmetric, and satisfies the constraint (reminiscent of the γ5-hermiticity
in lattice QCD) [3, 4]

O†
F = Γ5 OF Γ5 (2.15)

where Γ5 is the following unitary, antihermitian matrix

Γ5 =

 0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , Γ
†
5Γ5 = 1 Γ

†
5 =−Γ5 , (2.16)

which ensures that detOF is real and non-negative. While the absence of a complex phase allows
us to eliminate a systematic error of our previous analysis [1], it is not enough to make the Pfaffian
definite positive, implying that the model may still suffer a sign problem - we comment on this in
the next section.

3. The fermionic spectrum

As mentioned above, in simpler cases of models with four-fermion interactions [9,10] a choice
of Yukawa terms similar in spirit to the one described in the previous section turns out to ensure a
definite positive Pfaffian. There the relevant operator is real and antisymmetric – so that its purely
imaginary eigenvalues come in pairs (ia,−ia) – and the key point there is that eigenvalues are
also doubly degenerate. One may define the Pfaffian as the product of eigenvalues with positive
imaginary part on the initial configuration. As the simulation progresses, sign flips in the Pfaffian
correspond to an odd number of eigenvalues crossing through the origin, but as all eigenvalues are
doubly degenerate such sign changes cannot occur, something that has been checked numerically.
In our case one can check that – in the case of generally complex eigenvalues λ – the properties
(2.15) ensure a spectrum characterized by quartets (λ ,−λ ∗,−λ ,λ ∗), which would give a definite
positive Pfaffian. However, for purely imaginary or purely real eigenvalues, the disposition in
quartets is no longer enforced by (2.15) and indeed may not happen, leaving a spectrum of pairs
(λ ,−λ ) with no degeneracy. A numerical study of the spectrum of OF shows that the disposition
in quartets would always occur only if the A-terms in (2.12) – defining Yukawa-like terms – were
vanishing, see Figure 1 left, while for A 6= 0 (on the right) purely imaginary eigenvalues appear,
with no degeneracy. One should notice that such purely imaginary eigenvalues appear also when
auxiliary fields are set to zero - and thus the only non-vanishing A-term is the one present in the
original Lagrangian, before linearization – suggesting that the sign ambiguity cannot be tamed
by a suitably-enough choice of auxiliary fields. Figure 2, left panel, shows that the sign problem
becomes severe for values of the coupling g ∼ 2. Interestingly, the presence (case r = 1) of a
Wilson-like discretization [4] appears to shift its occurrence to lower g [1]. One convenient way
to answer the question of which region of the parameter space is free from a sign problem - and
whether in such region information on the non-perturbative behavior of the system is obtainable
– is to study the lowest part of the eigenvalue distribution for the fermionic operator and identify
a region of the parameter space where zero eigenvalues of the determinant cannot occur. This is
done in the right panel of Figure 2, which shows that the smallest eigenvalues are clearly separated

5
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Figure 1: Spectrum of OF , in absence (left diagrams) and presence (right diagrams) of A (Yukawa-
like) terms in (2.12).

from zero for values of g ≥ 10, where therefore sign flips cannot occur. It is interesting that this
region safely includes g = 10, at which (previous [4] and) current [1] simulations appear to detect
the non-perturbative behavior, for example, of the (derivative of the) cusp anomaly as measured
from the cusp action.
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