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I present the updated results of the discrete β -function of the SU(3) gauge theory with N f = 10
massless optimal domain-wall fermions in the fundamental representation. The renormalized
coupling is obtained by the finite-volume gradient flow scheme on L4 lattices, for seven lattice
sizes: L/a = 8,10,12,16,20,24,32; and each with 12 different lattice spacings parametrized
by 6/g2. The discrete β -function is extrapolated to the continuum limit using four lattice pairs
(L,2L)/a= (8,16),(10,20),(12,24) and (16,32). This provides stronger evidence of the infrared
fixed point at g2

c ∼ 7, which was first reported in Ref. [1], based on the continuum extrapolation
of the discrete β -function obtained with three lattice pairs.
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1. Introduction

In the weak-coupling perturbation theory (WCPT), the β -function of the non-abelian gauge
theory with N f massless fermion can possess a non-trivial infrared fixed-point (IRFP), besides
the ultraviolet fixed point (UVFP) at g2 = 0, provided that N f is within a range (i.e., the confor-
mal window), and these theories are infrared conformal [2, 3]. The relevance of these infrared
conformal theories to high energy phenomenology is the possibility that the Higgs scalar in the
Standard Model (SM) might be a bound state of fermion-antifermion in a new non-abelian gauge
theory with N f massless fermions just below the edge of the conformal window, as an approximate
Nambu-Goldstone boson resulting from breaking the conformal symmetry. This is one of the basic
motivations of studying the β -function and the conformal window of non-abelian gauge theory
with N f massless fermions. For a recent review, see, e.g., Ref. [4] and references therein.

In general, the conformal window depends on the gauge group as well as the representation
of the massless fermions. For SU(3) gauge theory with N f massless fermions in the fundamental
representation, WCPT to 2-loop order gives the (approximate) conformal window 8 < N f ≤ 16
[2]. For N f = 10, its IRFP is around g2 ∼ 28. Obviously, WCPT is not supposed to give a reliable
answer at such strong coupling. This calls for nonperturabtive study of the infrared behavior of the
running coupling of nonabelian gauge theory with N f massless fermions. This is a fundamental
problem in quantum field theory, regardless of whether the Higgs scalar is a composite scalar
arising from the breaking of the conformal symmetry or not.

Lattice gauge theory provides a viable framework for nonperturbative study of vector gauge
theories. Since we are dealing with massless fermions, it is vital to use lattice fermions with exact
chiral symmetry, i.e., domain-wall [5] /overlap [6, 7] fermions, having exactly the same flavor
symmetry as their counterparts in the continuum. In this paper, we focus on the SU(3) lattice
gauge theory with 10 massless domain-wall fermions (DWF) in the fundamental representation. To
preserve the chiral symmetry maximally on a lattice with finite extension in the fifth dimension, we
use the optimal DWF with R5 symmetry [8], which has the effective 4-dimensional lattice Dirac
operator exactly equal to the “shifted" Zolotarev optimal rational approximation of the overlap
operator, with the approximate sign function S(H) satisfying the bound 0 ≤ 1− S(λ ) ≤ 2dZ for
λ 2 ∈ [λ 2

min,λ 2
max], where dZ is the maximum deviation |1−

√
xRZ(x)|max of the Zolotarev optimal

rational polynomial RZ(x) of 1/
√

x for x ∈ [1,λ 2
max/λ 2

min], with degrees (n−1,n) for Ns = 2n.

To obtain the renormalized coupling of gauge theory on a finite lattice with volume L4, we use
the finite-volume gradient flow scheme [9], which is based on the idea of gradient flow [10, 11] to
evaluate the expectation value t2⟨E⟩, where E is the energy density of the gauge field, and t is the
flow time. This amounts to solving the discretized form of the following equation

dBµ

dt
= DνGνµ ,

with the initial condition Bµ |t=0 = Aµ , where Gνµ = ∂νBµ − ∂µBν + [Bν ,Bµ ], and DνGνµ =

∂νGνµ + [Bν ,Gνµ ]. As shown in Ref. [11], the gradient flow is a process of averaging gauge
field over a spherical region of root-mean-square radius Rrms =

√
8t. Moreover, since t2⟨E⟩ is

proportional to the renormalized coupling, one can use c =
√

8t/L as a constant to define a renor-
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malization scheme on a finite lattice, and obtain

g2
c(L,a) =

16π2

3[1+δ (c,a/L)]
⟨t2E(t)⟩, E(t) =

1
2

FµνFµν(t), (1.1)

where a is the lattice spacing depending on the bare coupling g0, E is the energy density, and the
numerical factor on the RHS of (1.1) is fixed such that g2

c(L,a) = g2
MS to the leading order. Here

the coefficient δ (c,a/L) includes the tree-level finite volume and finite lattice spacing corrections
[12]. In this paper, we use the Wilson flow, the Wilson action, and the clover observable, the so
called WWC scheme, which is known to have very small tree-level cutoff effects [12]. Moreover,
we fix c =

√
8t/L = 0.30.

For any input value of g2(L,a) = g2, we compute the discrete β -function (at finite a)

β (s,a/L,g2) =−g2(sL,a)−g2(L,a)
ln(s2)

, (1.2)

for all lattice pairs (L,sL) with fixed s. Assuming the discretization error of β (s,a/L,g2) behaves
as O(a2), one can extrapolate β (s,a/L,g2) to the continuum limit, i.e., lima→0 β (s,a/L,g2) =

β (s,g2), the so-called step-scaling method [13]. Moreover, if β (s,g2) is determined for several
values of s, then it can be extrapolated to s = 1,

lim
s→1

lim
a→0

β (s,a/L,g2) = lim
s→1

β (s,g2) = β (g2) =
dg2

d ln µ2 , (1.3)

which corresponds to the conventional β -function in the continuum. If β (g2) has an IRFP, then
β (s,g2) also has a corresponding IRFP, and vice versa. In this paper, we determine the discrete β -
function (with s = 2) of SU(3) lattice gauge theory with 10 massless optimal domain-wall fermions
in the fundamental representaion, using four lattice pairs (L,2L)/a = (8,16), (10, 20), (12, 24) and
(16, 32) for extrapolation to the continuum limit a → 0.

2. Simulations

We perform the HMC simulations with the Wilson plaquette gauge action and the optimal
domain-wall fermion action with R5 symmetry [8, 14] on the 5-dimensional lattice L4 × 16, for
lattice sizes L/a = 8,10,12,16,20,24,32, each with 12 bare coulings (g0) parametrized by β =

6/g2
0 = 15.0,12.0,10.0,9.0,8.0,7.5,7.0,6.8,6.7,6.6,6.5,6.45. Thus we have a total of 84 gauge

ensembles. The boundary conditions of the gauge field are periodic in all directions, while the
boundary conditions of the pseudofermion fields are antiperiodic in all directions. The simulations
are performed on Nvidia GPUs. All gauge ensembles (except the 244 and 324 lattices at strong
couplings) are simulated in one single stream, with one GPU or two GPUs in one computing node.
For each gauge ensemble, we generate 4000-10000 trajectories after thermalization, and sample
one configuration every 5 trajectories, which yields 800-2000 configurations for measurements.
The statistical error of t2⟨E⟩ is estimated by the jackknife method with a bin size of 10-15 con-
figurations of which the statistical error saturates. For any gauge ensemble, the statistical error of
t2⟨E⟩ is less than 0.5% for c =

√
8t/L = 0.3. The chiral symmetry breaking due to finite Ns = 16

is measured with the formula of the residual mass in Ref. [15], and the residual mass for any gauge
ensemble in this work is less than 5×10−5.
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3. Results

Fixing c =
√

8t/L = 0.3, we measure the renormalized coupling g2(L,a) according to (1.1).
The statistical error of t2⟨E⟩ is estimated by the jackknife method with a bin size of 10-15 config-
urations of which the statistical error saturates. For each gauge ensemble, the statistical error of
g2(L,a) is less than 0.5%. In Fig. 1, we plot the data of 1/g2(L,a) versus a/L, for 12 different
values of β = 6/g2

0. Here the y-axis is in the common logarithm scale. The data points with the
same β are connected by a dotted line. For each β , 1/g2(L,a) is a monotonic increasing function
of a/L.
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Figure 1: The data of 1/g2(L,a) versus a/L, for L/a= 8,10,12,16,20,24,32, and for 12 values of β = 6/g2
0

(as shown at the RHS of the figure). The data points of the same β = 6/g2
0 are connected by a dotted line.

The y-axis is in the common logarithm scale.

To compute the discrete β -function (1.2) for any g2(L,a), it requires g2(L,a) and g2(2L,a) at
the same β = 6/g2

0 which in general is not equal to the 12 values of β = 6/g2
0 in our simulations.

In other words, the value of g2(L,a) at any β ∈ [6.45,15.0] has to be obtained by interpolation,
based on the 12 data points of g2(L,a) for each L. To this end, we use the cubic spline interpolation
to obtain g2(L,a) for any β ∈ [6.45,15.0]. Then, for any input value of g2(L), the discrete β -
function (1.2) can be obtained for any lattice pair (L,2L). Since both the action and the observable
only contain O(a2) corrections, the discrete β -function β (2,a/L,g2) can be linearly extrapolated
to the continuum limit as a function of (a/L)2, using 4 data points of different lattice spacings
corresponding to the lattice pairs: (8, 16), (10, 20), (12,24) and (16, 32).

In Fig. 2, we plot −β (2,a/L,g2) versus (a/L)2, for g2(L) = 0.7, 1.0, 2.0, 4.0, 5.0, 6.0, 6.8, and
7.0, together with the extrapolation to the continuum limit by the linear fit. For g2(L) ≤ 6.80, the
data points are well fitted by a straight line with χ2/d.o.f < 1. At g2(L) = 6.80, the linear fit gives
−β (2,g2) = 0.09(6) with χ2/d.o.f. = 0.71, which is quite close to the IRFP. At g2(L) = 6.90,
the linear fit gives −β (2,g2) = 0.04(5) with χ2/d.o.f. = 0.91, which is closer to the IRFP than
g2(L) = 6.80. At g2(L) = 7.0, the linear fit gives β (2,g2) = 0.00(8) with χ2/d.o.f.= 1.33, which
is consistent with zero up to the estimated error. This suggests that g2(L) ≃ 7.0 is an IRFP of the
discrete β -function of the SU(3) gauge theory with N f = 10 massless fermions in the fundamental
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Figure 2: The discrete beta-functions of four lattice pairs (L,sL)/a = {(8,16), (10,20), (12,24), (16,32)}
are plotted versus (a/L)2, for g2(L) = 0.7, 1.0, 2.0, 4.0, 5.0, 6.0, 6.8, and 7.0. The extrapolation to the
continuum limit (a → 0) is obtained by linear fit, as shown by the straight line in each diagram.
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representation, in the finite-volume gradient flow scheme with c =
√

8t/L = 0.3.
The results of discrete β -function in the continuum limit β (s,g2) are plotted in Fig. 3, together

with the 2-loop and 3-loop discrete β -functions in the MS scheme.
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Figure 3: The discrete β -function in the continuum limit β (2,g2) versus g2, for the SU(3) lattice gauge
theory with N f = 10 massless optimal DWF. The solid and dashed lines are the 2-loop and 3-loop discrete
β -functions in the MS scheme.

The salient features of the discrete β -functions in Fig. 3 can be summarized as follows. In
the weak-coupling regime g2(L)≤ 2.2, the lattice β -function is in good agreement with the 2-loop
and 3-loop MS results, as a decreasing function of g2(L). Then, in the regime 2.2 ≤ g2(L) ≤ 5.3,
the lattice, the 2-loop, and the 3-loop β -functions are all decreasing functions of g2(L), but with
different rates. In the strong-coupling regime, 5.3 ≤ g2(L) ≤ 7.0, the lattice β -function turns into
an increasing function of g2(L) at g2(L)≃ 5.3, and it finally reaches IRFP at g2(L)≃ 7.0, while the
2-loop and 3-loop β -functions remain as decreasing functions of g2(L) with differnt rates. Note
that the 3-loop β -function bends up to become an increasing function at g2(L) ≃ 7.6, then attains
its IRFP at g2(L)≃ 10.6 (out of the scale in Fig. 3).

4. Concluding remarks

In this work, the discrete β -function of SU(3) lattice gauge theory with N f = 10 massless
domain-wall fermions in the fundamental representation is determined with 84 gauge ensembles
consisting of 7 lattice sizes (L/a)4 = 84,104,124,164,204,244,324, and each lattice size of 12 val-
ues of β = 6/g2

0 ∈ [6.45,15.0]. The renormalized coupling is obtained by the finite-volume gradient
flow scheme with c =

√
8t/L = 0.3, and the discrete β -function β (2,a/L,g2) is extrapolated to the

continuum limit by the step-scaling method. The discrete β -function β (2,g2) in Fig. 3 shows
that the theory possesses an infrared fixed point around g2 ∼ 7.0, and it is infrared conformal. An
estimate of the systematic errors due to: (i) the values of g2(L,a) are obtained by interpolation in
β = 6/g2

0, and (ii) the extrapolation of β (s,a/L,g2) to the continuum limit, will be presented in the
updated version of Ref. [1].
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Moreover, the interpolation error has been kept under control by simulating more gauge en-
sembles at some crucial values of β = 6/g2

0, i.e, more than 12 values of β . To this end, I have
introduced a criterion for adding a data point within the interval of two adjacent data points in β
such that the resulting interpolation error after adding this new data point can be reduced to one’s
desired accuracy. The details will be presented in the updated version of Ref. [1].
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