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Dirac semimetals are recently discovered materials with low energy electronic excitation spectrum
similar to the massless two favour 3+1 Dirac fermions. The interaction between quasiparticles in
Dirac semimetals is instantaneous Coulomb with large effective coupling constant α ∼ 1. In
this report we present results of study of the phase diagram of Dirac semimetals within lattice
simulation with rooted staggered fermions. In particular, we calculate the chiral condensate as
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1. Introduction

One of the most important recent advances in the condensed matter physics is the experimental
discovery of graphene [1, 2]. The main peculiarity of graphene, which attracts considerable interest,
is the existence of two Fermi points in its electronic spectrum. In the vicinity of the Fermi points
fermionic excitations are analogous to massless 2D Dirac fermions [3].

Recently there have been discovered Dirac semimetals Na3Bi [4] and Cd3As2 [5, 6], which are
3D analogues of graphene. These materials also have two Fermi points. In the vicinity of these
points fermionic excitations are analogous to massless 3D Dirac fermions and the dispersion rela-
tion can be written as E2 = v2

‖(k
2
x +k2

y)+v2
⊥k2

z , where v‖,v⊥ are Fermi velocities in the (x,y)-plane
and z-direction correspondingly. Fermi velocities for these Dirac semimetals are v f ∼ c/1000.

Fermionic excitations in the Dirac semimetals interact with each other via electromagnetic
interaction. The smallness of Fermi velocity allows to disregard the effects of retardation and
magnetic interaction. In other words, one can treat interaction between quasiparticles as Coulomb
instantaneous. Effective coupling constant αe f f = αel/v f > 1, where αel = 1/137 is the cou-
pling constant of electromagnetic interaction. One sees that the effective coupling constant is large
enough and can significantly change the properties of Dirac semimetals. In particular, it is known,
that large interaction between quasiparticles can lead to dynamical chiral symmetry breaking, ap-
pearance of the gap in the fermionic spectrum and phase transition from semimetal to insulator.

Our purpose is the study of the phase diagram of Dirac semimetals within Monte-Carlo simula-
tions. In particular, we study the value of the critical coupling constant αc

e f f , at which the transition
from semimetal to insulator occurs, and its dependence on the value of Fermi velocity anisotropy
ξ = v‖/v⊥. We are going to use Monte-Carlo simulation which fully accounts many-body effects
for arbitrary coupling constant. This approach proved to be very efficient in studying the properties
of the strongly correlated systems, for instance, graphene [7, 8, 9]. A more complete description of
this study is given in [10]. It is worth mentioning that the phase diagram of Dirac semimetals was
studied analytically in [11, 12, 13, 14, 15].

2. Effective model

The partition function of the system to study:

Z =
∫

Dψ Dψ̄ DA4 exp
(
−SE

)
, (2.1)

where ψ̄,ψ are fermionic fields, A4 - is the timelike component of the electromagnetic vector
potential. Euclidean action SE can be written in the following form:

SE =
N f =2

∑
a=1

∫
d3xdtψ̄a(γ4(∂4 + iA4)+ξiγi∂i)ψa +

1
8παe f f

∫
d3xdt(∂iA4)

2 (2.2)

Here ξi ∼ 1 are factors that incorporate Fermi velocity anisotropy. Note that action (2.2)
doesn’t depend on spacelike components Ai. Taking into account spacelike components of the
vector potential leads to correction suppressed by factors ∼ (v f )

k, k > 1, which study is beyond
the approximation used in our simulations.
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In the study we used noncompact discretization of electromagnetic field:

Sg =
β

2 ∑
x,i
(θ4(x)−θ4(x+ i))2, (2.3)

where we introduced β = 1
4παe f f

.
We used staggered fermions [16] with rooting for modelling N f = 2 fermionic flavours:

S f = Ψ̄xDx,yΨy = ∑
x

(
mΨ̄xΨx +

1
2
[Ψ̄xη4(x)eiθ4(x)Ψx+4̂− Ψ̄x+4η4(x)e−iθ4(x)Ψx] +

+
1
2

3

∑
i=1

ξi[Ψ̄xηi(x)Ψx+î− Ψ̄x+iηi(x)Ψx] ) ,

(2.4)

where ηµ(x) = (−1)x1+...+xµ−1 , µ = 1, . . . ,4 (η1 = 1) are factors corresponding to γ-matrices for
staggered fermions.

We introduced nonzero mass in Eq. (2.4) for invertibility of the Dirac operator Dx,y. Results
for zero mass are obtained by studying the extrapolation to the chiral limit m→ 0.

Integrating over fermionic fields, one obtains

Z =
∫

Dθ4(x)exp
(
−Se f f

)
, Se f f =− lndetD[θ ]+Sg. (2.5)

The effective action (2.5) corresponds to four Dirac fermions in the continuum limit [16]. In
order to have two fermions one has to take the second root of the determinant of the Dirac operator,
which is realized by the rooting procedure. Thus, the effective action, which was used for the study,
has the following form:

S(e f f ) =−1
2

lndetD[θ ]+Sg. (2.6)

For the generation of θ4(x) field configurations with the statistical weight exp(−S(e f f )[θ ]) we
used rational hybrid Monte-Carlo method [16].

It is known that strong enough interaction between quasiparticles can lead to the chiral sym-
metry breaking, formation of the condensate Ψ̄Ψ and appearance of the gap in the spectrum. We
study the dependence of the chiral condensate on the value of αe f f , which is the order parameter
of the transition semimetal-insulator. In our study we look at the following observables: fermionic
condensate σ = Ψ̄Ψ, susceptibility of the chiral condensate χ = ∂σ

∂m
1, logarithmic derivative of the

chiral condensate R = ∂ lnσ

∂ lnm .
Note that in the chiral limit m = 0: σ = 0 in the chiral symmetric phase and σ 6= 0 in the phase

where chiral symmetry is broken. The logarithmic derivative R reveals the following properties:
in the chirally symmetric phase σ ∼ m and R→ 1. At the critical point R→ 1/δ , where δ is a
universal critical exponent and R→ 0 in the phase with broken chiral symmetry.

3. Numerical results

First let us study the case without anisotropy of Fermi velocity in different directions (ξ1 =

ξ2 = ξ3 = 1). In numerical simulations we used lattice size 204.
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Figure 1: The chiral condensate 〈Ψ̄Ψ〉 as a function of β for different values of mass m. Black line corre-
sponds to chiral limit m→ 0 taken with the help of EoS (3.1).
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Figure 2: Susceptibility χ of the chiral condensate as a function of β for different values of mass m.

In Fig. 1 the dependence of σ on β for different fermion masses is presented. It is seen from
this plot that the chiral condensate is nonzero at β < βc with critical value βc ∼ 0.04−0.06.

In Fig. 2 we present results for the susceptibility of the chiral condensate χ = ∂σ

∂m as a function
of β for different values of mass. The plot shows a clear peak at small values of mass m ≤ 0.005,
which is also an indication of the phase transition. The critical value of the β determined from the
position of the peak is slightly larger and decreases when the mass decreases.

In Fig.3 the dependence of the logarithmic derivative R as a function of mass for different
values of β is presented. Taking into account the behaviour of the derivative discussed above one
can conclude that for large values of β ≥ 0.0475 the system has no gap, while for small values of
β ≤ 0.0425 results indicate the formation of the gap. Thus we can estimate the critical coupling
β = 0.0450± 0.0025, which is in the agreement with the previous estimations obtained with the
help of the chiral condensate and susceptibility.

To estimate the values of βc more precisely we fit the data with an equation of state (EoS):

mX(β ) = Y (β ) f1(σ)+ f3(σ), (3.1)

1Note, that all dimensionful parameters and observables in this paper are expressed in lattice units
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Figure 3: Logarithmic derivative of R of the chiral condensate as a function of mass m for different values
of coupling constant β .
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Figure 4: The squared chiral condensate σ as a function of m
σ

. Straight lines correspond to the fit of all
points with EoS (3.1).

ξ αc
e f f

1 1.749(2)
0.5 1.762(3)
0.2 1.467(10)
0.1 1.150(8)

Table 1: Critical coupling constant αc
e f f as a function of Fermi velocity anisotropy ξ .

where X(β ) and Y (β ) are expanded in the vicinity of critical βc: X(β ) = X0 + X1(1− β/βc),
Y (β ) = Y1(1− β/βc). For functions f1 and f3 we used classical critical exponents: f1(σ) = σ ,
f3(σ) = σ3. This equation of state can be easily visualized if one plots σ2 vs m/σ (Fisher plot).
The resulting dependence σ2(m/σ) forms straight lines for different β . The line that crosses the
origin corresponds to βc. The Fisher plot is presented in Fig. 4. Straight lines correspond to the fit
by Eq. 3.1. This fit gives βc = 0.04549(6), what corresponds to critical coupling αc

e f f = 1.749(2).
Here only statistical error is given. Note that the obtained value is close to the results, obtained
within ladder approximation [13].

4



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
2
4
3

Numerical simulation of Dirac semimetals A. Yu. Kotov

 1.2

 1.4

 1.6

 1.8

 2

 0  0.2  0.4  0.6  0.8  1

Semimetal
α

e
ff

ξ

Insulator

Figure 5: The dependence of the critical coupling constant αc
e f f on the Fermi velocity anisotropy ξ . For

αe f f > αc
e f f (ξ ) the system is in the insulator phase. Smaller values of αe f f < αc

e f f (ξ ) correspond to the
semimetal phase. Statistical errors are smaller than data points. Lines are to guide the eyes.

Now we proceed to the anisotropic case which is parametrized by the parameter ξ = ξ3 < 1
(ξ1 = ξ2 = 1). The calculations were carried out with the lattice size 204. We considered the values
of ξ = 0.1, 0.2, 0.5. The figures for these values of ξ are similar to the isotropic case, for this
reason we do not show it here. The resulting dependence of the critical βc on the value of ξ is
presented in Tab. 1 and shown in the Fig. 5.

Parameter ξ effectively controls the dimensionality of the system. If ξ = 1 the system is 3-
dimensional. If ξ = 0 the system corresponds to the stack of 2-dimensional sheets with Fermi
velocity v‖. From quantum mechanics one may expect that for the 2D system the critical coupling
is smaller, what is in agreement with the presented results.

The effective coupling constants for the Dirac semimetals Na3Bi, Cd3As2 are αe f f ∼ 5. Our
analysis implies that these materials are deep in the insulator phase, what contradicts to the experi-
ments. It rises very important question: why such strong interaction in Dirac semimetals does not
lead to the generation of energy gap in the fermion spectrum? This puzzle probably can be settled
either by renormalization effects or by the fact that in the real world the interaction potential is
screened by bound electrons. Although this question is very important it is beyond the scope of
this report.

4. Conclusions

The phase diagram of Dirac semimetals was studied within lattice Monte-Carlo simulation.
We concentrated on the dynamical chiral symmetry breaking which results in semimetal/insulator
transition. We measured the chiral condensate and the chiral susceptibility for different values of
the fermion mass, effective coupling constant and Fermi velocity anisotropy. We determined the
values of the critical coupling of the semimetal/insulator transition for different values of the Fermi
velocity anisotropy. Tentative phase diagram of Dirac semimetals is drawn.

It turns out that within the Dirac model with Coulomb interaction both Na3Bi and Cd3As2

known experimentally to be Dirac semimetals would lie deeply in the insulating region of the
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phase diagram. It probably shows a decisive role of screening of the interelectron interaction in
real materials, similar to the situation in graphene.
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