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There are plausibility arguments that QED in three dimensions has a critical number of flavors

of massless two-component fermions, below which scale invariance is broken by the presence of

bilinear condensate. We present numerical evidences from our lattice simulations using dynamical

overlap as well as Wilson-Dirac fermions for the absence of bilinear condensate for any even

number of flavors of two-component fermions. Instead, we findevidences for the scale-invariant

nature of three-dimensional QED.
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1. Introduction

Parity-invariant QED3 with 2Nf flavors of massless two-component fermions coupled to three-
dimensional non-compact Abelian gauge-fields has been studied in the pastas a quantum field
theory which can be tuned to be conformal or to have a mass-gap by changing Nf . The question
is the following – is there a critical number of flavors of two-component fermions2Nf below
which massless QED3 in a finite box of lengthℓ generates other low-energy length scales which
are independent ofℓ asℓ→ ∞? One such low-energy length scale that is of interest is the bilinear
condensateΣ which, if non-zero, governs the following scaling of the low-lying eigenvaluesλi of
the massless Dirac operator:

λi =
zi

Σ
1
ℓ3 , (1.1)

wherezi are universal numbers depending only on the symmetries of the Dirac operator, and can
be obtained from a random matrix model with the same symmetries (refer [1] for such a model
corresponding to QED3). In this talk, based on our publications [2, 3], we primarily address the
existence ofΣ for smallNf (= 1,2,3,4) by asking ifλ ∼ ℓ−(1+p) with p= 2. We summarize the
status of the understanding of the criticalNf before our studies in Figure 1 (see [2] and references
therein, for a complete literature survey). The analytical computations, each with their own limita-
tions, suggested that the criticalNf lie between 0 and 4. The previous lattice studies suggested that
it could be 1 or 2.
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Figure 1: Few representative older calculations [4, 5, 6, 7, 8, 9] of the critical value ofNf below which
bilinear condensate exists. The large-Nf computation points to an infra-red fixed point. Various perturbative
calculations as well as approximate solutions to the gap equation have been carried out to investigate the
stability of the infra-red fixed point. These calculations suggest the critical value might lie anywhere between
0 and 4. The previous non-perturbative lattice studies of QED3 suggest this critical value might be 1 or 2.

2. Lattice details

We regulated QED3 in a finite box of physical volumeℓ3 usingL3 lattices. The lattice coupling
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appearing in the gauge action isβ = L/ℓ; the continuum limit at a fixed physical lengthℓ is taken
by extrapolating toL → ∞. We regulated the two flavors of massless two-component fermions in a
parity-invariant way using the Wilson-Dirac as well as overlap fermions. The fermion propagator
G for the parity-preserving Wilson-Dirac fermion is

G−1 =

[

0 X
−X† 0

]

; X =Cn+B−mt . (2.1)

Cn is the two-component naive Dirac operator,B is the Wilson term andmt is tuned such that the
lowest eigenvalueλ1 of iG−1 is minimum. We further improved it by adding a Sheikholeslami-
Wohlert term and by using HYP smeared links in the Dirac operator. The fermion propagatorG for
the overlap fermion, which has the full U(2Nf ) symmetry even at finite lattice spacing, is given in
terms of a unitary matrixV = (X†X)−1X as1

G−1 =

[

0 1−V
1+V

1−V
1+V 0

]

. (2.2)

We define the “eigenvalues of the Dirac operator” in either case to be the eigenvaluesλ i of iG−1

which are real. We used standard HMC for generating∼ 500− 1000 independent gauge con-
figurations at all the simulation points (4≤ ℓ ≤ 250). Using Wilson-Dirac fermions we studied
Nf = 1,2,3 and 4. With the overlap fermion, we studiedNf = 1. At eachℓ, we used multipleL3

lattices (12≤ L ≤ 24) in order to take the continuum limits.

3. Evidence from ℓ-scaling of the low-lying eigenvalues of Dirac operator
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Figure 2: On the left panel, theℓ dependence of the six low-lying, continuum extrapolated, eigenvalues of
the overlap operator is shown. The Padé approximations to their ℓ dependence withp= 1 are shown as the
solid curves. On the right panel, the likelihood of different values of the exponentp, measured using the
χ2/DOF for the best fit of the Padé approximation with various values ofp to the finiteℓ data, is shown.

1The Wilson massmt = 1 in overlap simulations
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In a finite physical box, the spectrum of the Dirac operator is discrete. Thus, one can talk about
theℓ-dependence of the individual low-lying eigenvalues. As we noted in the introduction, thei-th
low-lying eigenvalueλi will scale asℓ−3 when there is a condensateΣ. If ℓ−3 scaling is not found,
we can conclude that a bilinear condensate is absent and instead we can obtain the mass anomalous
dimension of the scale-invariant theory; sinceλ has an engineering dimension of mass, the mass
anomalous dimensionγm is p if λ ∼ ℓ−p−1 andp< 1.

In the left panel of Figure 2, we show the dependence of the continuum extrapolated values of
λiℓ as a function of 1/ℓ for the six low-lying eigenvalues of the overlap operator in a log-log plot.
At any finiteℓ that we studied, the sloped log(λ ℓ)

d log(1/ℓ) is less than 2, the value that is expected ifΣ 6= 0.
In fact, it is less than 1. We estimate the exponent of the power-law that wouldbe seen asℓ→ ∞
by describing theℓ-dependence of our data by

λ ℓ= ℓ−pF(1/ℓ), (3.1)

with an unknown scaling correctionF . We approximateF by a [1/1] Padé approximant. We
find it numerically stable to write the Padé approximant in terms of tanh(1/ℓ). The best fits of
the above ansatz withp = 1 to the data are shown by the solid curves in the left panel of Figure
2. In the right panel, we show theχ2/DOF for such fits to the six low-lying eigenvalues as a
function of the exponentp. The valuep = 2 is clearly ruled out, which implies the absence of a
condensate. Assuming the theory does not generate other length scales aswell, we can estimate
the mass anomalous dimensionγm = p of the theory to be 1.0(2) from the same plot. Further, we
support the correctness of our result by comparing theℓ-dependence of the continuum extrapolated
low-lying eigenvalues of the two different lattice Dirac operators in Figure 3. A perfect agreement
between the Wilson-Dirac and the overlap formalisms is seen. Due to such an agreement, we study
theNf = 2,3,4 cases using only the Wilson-Dirac fermion.
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Figure 3: The plot compares theℓ-dependence of the first three low-lying eigenvalues, aftertaking the
continuum limit, using Wilson fermions (open symbols) and overlap fermions (filled symbols) for theNf = 1
case.

In Figure 4, we show theℓ-dependence of the continuum extrapolated smallest eigenvalue for
different number of flavorsNf = 1,2,3 and 4. The eigenvalues scale with a smaller exponentp as
Nf increases, consistent with the expectation that ifNf = 1 does not have a bilinear condensate,
theNf = 2,3,4 also would not. Thus QED3 does not have a bilinear condensate for all non-zero
Nf . Again, assuming this means that QED3 is scale-invariant for allNf , we estimate the mass
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Figure 4: Theℓ-dependence of the smallest eigenvalue of the Wilson-Diracoperator forNf = 1,2,3 and 4.
The expected scaling when a bilinear condensate is present,λ ℓ∼ ℓ−2, is shown by the black straight line in
this log-log plot. The exponentp for the asymptoticℓ-scaling seems to decrease as 1/Nf .

anomalous dimension to beγm= 1.0(2),0.6(2),0.37(6) and 0.28(6) forNf = 1,2,3,4 respectively.
Surprisingly, this agrees with an analytical calculation [10] ofγm to O(1/N2

f ) where no assumption
about bilinear condensate is made; the analytical values areγm = 1.19,0.56,0.37 and 0.28 for
Nf = 1,2,3,4 respectively.
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Figure 5: (Left) The zero spatial momentum scalar correlatorG(t) = 〈Σ(0)Σ(t)〉 as a function of temporal
separationt. The different lines are tangents to the correlator, with slopek(t), at varioust on the log-log plot.
(Right) The mass anomalous dimension given byγm(t) = 1−k(t)/2 is plotted as a function of the scalet.

The other way to obtain the mass anomalous dimension is to study the scalar correlatorG(t) =
〈Σ(0)Σ(t)〉 projected to zero spatial momentum. The correlator is shown as a function of the
temporal separationt in the left panel of Figure 5. The first thing to notice is the concave-up
nature of the correlator. This indicates the absence of a mass-gap, thereby ruling out the presence
of another length scale in addition to a bilinear condensate. The slope on the log-log plot, k(t) =
d log(G(t))

d log(t) , is related to a scale dependent mass anomalous dimensionγm(t) asγm(t) = 1− k(t)/2.
This is shown as a function of 1/t in the right panel of Figure 5. The mass anomalous dimension
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at the IR fixed point to which QED3 with Nf = 1 flows to, isγ∗ = limt→∞ γm(t). We estimate by
an extrapolation thatγ∗ = 0.8(1). This is consistent with the estimate 1.0(2) from the eigenvalues
described above. The agreement between two different approachesto γ∗ serves as a cross-check.

4. Evidence from Inverse Participation Ratio and number variance
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Figure 6: (Left) Theℓ-scaling of the inverse participation ratioI2 for Nf = 1. The critical exponent of the
scaling isη = 0.38(1). (Right) The number varianceΣ2 is shown as a function ofn. A disagreement with
nonchiral random matrix model (black points) is seen. Instead, a critical linear rise is seen, whose slope
approachesη/6 shown as the black solid line.

The Inverse Participation Ratio (IPR) is defined as

I2 ≡

〈

∫

(ψ∗
λ (x)ψλ (x))

2d3x

〉

, (4.1)

whereψλ is the normalized eigenvector corresponding to the eigenvalueλ . In random matrix mod-
els, which are ergodic,I2 ∼ ℓ−3. Thus, if the theory has a condensate, the low-lying eigensystem
of the Dirac operator would be described by a random matrix model. Thus the IPR corresponding
to the low-lying eigenvalues should show aℓ−3 scaling. This is another test for the presence ofΣ.
Instead, if the theory is scale-invariant, the finite size scaling of IPR would beI2 ∼ ℓ−3+η , where
η is a critical exponent. The exponentη is related to a quantity called number varianceΣ2 which
measures correlations between the eigenvalues. The number varianceΣ2(n) is defined as the vari-
ance of the number of eigenvalues below a valueλ which on the average containsn eigenvalues.
In ergodic random matrix models,Σ2(n)∼ log(n). For a critical theory,Σ2(n)∼ (η/6)n, whereη
is the critical exponent from the IPR [11].

In the left panel of Figure 6, we have shown theℓ-scaling of IPR forNf = 1. For largeℓ, the
onset of scaling is clearly seen. The scaling isI2 ∼ ℓ−2.62(1). Firstly, this rules out the ergodicℓ−3

scaling. The theory has a non-zero critical exponentη = 0.38(1). As explained above, in a critical
theory,η should satisfy a critical relation to the slope of number variance. In the right panel of
Figure 6, we have shownΣ2(n) as a function ofn. Again, clearly there is a disagreement with the
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expectation from the nonchiral random matrix theory thereby ruling out condensate in another way.
We see a linear rise inΣ2(n) indicating a critical behavior. Asℓ is increased, the slope of the linear
rise seems to approachη/6, as shown by the black line in the figure. Thus, both the IPR andΣ2

show critical behavior, and also they satisfy the critical relation between the two.

5. Conclusions

In this talk, we presented convincing numerical evidences for the absence of a bilinear con-
densate for allNf . Instead, we found evidences for QED3 to be scale-invariant, and we estimated
the mass anomalous dimension at the infra-red fixed point at variousNf . In another work [12], we
established the presence of a condensate in the ’t Hooft limit using the same methods we described
here. This suggests an interesting phase diagram in the(Nf ,Nc) plane whose one side is conformal
while the other side has a mass-gap, providing a powerful system to understand the generation of
mass in QFTs. We aim to present results on this in a future Lattice meeting.

The authors acknowledge partial support by the NSF under grant number PHY-1205396 and
PHY-1515446.
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