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We investigate a class of four-fermion theories which includes well-known models like the Gross-
Neveu model and the Thirring model. In three spacetime dimensions, they are used to model
interesting solid state systems like high temperature superconductors and graphene. Additionally,
they serve as toy models to study chiral symmetry breaking (CSB).
For any number of fermion flavours the Gross-Neveu model has a broken and a symmetric phase,
while the existence of a broken phase in the Thirring model depends on the number of flavours.
The critical number of fermion flavours beyond which there exists no CSB is still subject of
ongoing discussions. Using SLAC fermions we simulate the Thirring model with exact chiral
symmetry. To obtain a chiral condensate one can introduce a symmetry-breaking mass term and
carefully study the limits of infinite lattice and zero-mass. So far, we did not see CSB within this
approach for the Thirring model with 2 or more (reducible) flavours.
The talk presents alternative approaches to investigate these findings. We employ certain Fierz
identities to map the Thirring model into equivalent four-fermion models, for which the chiral
condensate does not seem to vanish. In the new formulations based on reshuffled degrees of
freedom we find a sign problem (which is not present in the original formulation). For this reason
we developed an algorithm similar to fermion bags, which may solve this problem. As a further
approach, we embed the multi-flavour Thirring model in a larger class of four-fermion theories to
study the chiral symmetry and its breaking in a wider context.
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1. Introduction

We investigate a class of Nf fermion-flavour field theories with quartic interactions. The Eu-
clidean Lagrangian has the general form

L = ψ̄ j
(
/∂ +m

)
ψ j +∑

α

g2
α

2Nf
(ψ̄ jΓαψ j)

2 j = 1, . . . ,Nf, (1.1)

where Γα could be any (antisymmetrised) product of γ-matrices or the identity. Notable examples
are the Thirring model (Γα = γµ ) [1], which can be solved analytically in 2 dimensions, the Nambu-
Jona-Lassinio model introduced to study dynamical mass generation in 4 dimensions (Γ1 = 1 and
Γ2 = iγ5) [2], and the 2-dimensional Gross-Neveu model (Γ= 1), as toy-model to study asymptotic
freedom and CSB [3].

We are mainly interested in 3-dimensional versions of the massless Thirring model, because
it is similar to QED3 and may have applications in condensed matter systems like superconductors
and graphene (see for example [4, 5]). Having these applications in mind many authors considered
the model with a reducible representation of the Clifford algebra, where the γµ for µ = 1,2,3 are
the usual matrices known from 4 dimensions acting on 4-component spinors. We shall follow this
habit in Section 2 where we use a 4-dimensional reducible representation as well. In sections 3
and 4 we instead use an irreducible 2-dimensional representation of the Clifford algebra.

The massless Thirring model with Nf reducible flavours has an enlarged U(Nf,Nf) symmetry
generated by the matrices {1, iγ4, iγ5, iγ4γ5} tensored with anti-hermitian matrices acting on the
flavour indices. Here γ1, . . . ,γ4 and γ5 = γ1γ2γ3γ4 are γ-matrices in four (Euclidean) dimensions. A
mass term or chiral condensate breaks the symmetry explicitly or spontaneously to U(Nf)⊗U(Nf).
In an irreducible representation with 2-component spinors the model has Nf,irr = 2Nf flavours. The
Thirring model with one irreducible flavour (which cannot be written in terms of reducible spinors)
is equivalent to the Gross-Neveu model with one irreducible flavour which shows CSB [6]. On
the other hand, since a broken phase is absent in the large-Nf expansion of the Thirring model
there must exist a critical flavour number Ncr

f > 1/2 (or equivalently Nf,irr > 1) such that symmetry
breaking occurs only for Nf < Ncr

f . There have been many different predictions for Ncr
f based

on Schwinger-Dyson equations [7–9], 1/Nf-expansion [10], functional renormalization group [11]
and lattice simulations [12–16]. Most of these studies find Ncr

f between 2 and 7, but there is no
agreement on a concrete value.

Our goal is to improve the lattice results for Ncr
f . This is desirable, since all previous attempts

used staggered fermions which do not admit the full chiral symmetry. Hence it is not clear, whether
in the continuum limit one ends up within the universality class of the Thirring model. We pre-
sented first results with SLAC fermions in [17]. This approach allows simulations with exact chiral
symmetry, but for the reducible model we did not see a non-vanishing chiral condensate. Further
investigations with explicit symmetry breaking terms (global fields and a mass term) showed the
same results after the trigger was removed. Although a reliable estimate was not possible, these
simulations indicate a small value of Ncr

f ≈ 2. Remarkably, this is in agreement with recent simu-
lations with domain wall fermions [18], where no sign of symmetry breaking was found at Nf = 2.

The remaining sections each shortly present a different route to shed further light on the still
unsatisfactory situation regarding chiral symmetry and its breaking in the Thirring model.
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2. Two Four-Fermion Interactions

One approach to study CSB is to enlarge the theory space. This is motivated by observations
within the framework of functional renormalization group, where the fixed point governing the
critical behaviour of the Thirring model is found outside of the class of Thirring models [11]. In
addition, the enlarged theory space contains the Gross-Neveu model, the expected phase structure
of which is well-reproduced with simulations based on SLAC fermions.

First results for the coupled Nf = 1 model with Lagrangian

L = ψ̄ j /∂ψ j +
1

4NfλGN
(ψ̄ jψ j)

2 +
1

4NfλTh

(
ψ̄ jγµψ j

)2 (2.1)

can be found in Figure 1. There is a large region with non-vanishing chiral condensate, which bends
towards the pure Thirring model with λGN → ∞. Although the maximal value of the condensate
is decreasing with increasing λGN, there is some trace of CSB left for finite λGN. The suscepti-
bility on the right hand side of Figure 1 shows a clear peak at the physical phase transition of the
Gross-Neveu model and another peak at smaller λTh, where the condensate decreases again. As in
our previously reported results with a global symmetry-breaking field [17], we interpret this as a
transition to a lattice artefact phase. Again similar to our previous findings, these two transitions
merge when approaching the pure Thirring model. CSB is possible for Nf = 1, but the existence of
the lattice artefact phase does not allow for a final conclusion.
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Figure 1: Chiral condensate (left) and susceptibility (right) of the coupled Gross-Neveu and Thirring model
for Nf = 1 and lattice size 8× 7× 7. The right (orange) edge of each plot is in the direction of the pure
Gross-Neveu model, while the top (green) edge is in the direction of the pure Thirring model.

Motivated by [19] we also studied a model with interaction ± 1
4Nfλ45

(ψ̄iγ4γ5ψ)2, which shares
the full U(Nf,Nf) symmetry with the Thirring model. The model with negative sign should behave
like a Gross-Neveu model, but shows a sign problem and thus is not accessible through conven-
tional lattice simulations. Hence we will present here results for the model with positive sign. Then
there is no sign problem and the model behaves similar to the Thirring model. There is no direct
evidence for CSB in the single γ45-model, but the Nf = 1 phase space for the model coupled to the
Gross-Neveu model in Figure 2 looks similar to Figure 1. For this simpler model, we also simu-
lated Nf = 2,3 and 4. Figure 2 shows a slight bending of the phase transition line towards the pure
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Figure 2: Chiral condensate (left) and susceptibility (right) of the Gross-Neveu model with additional γ45-
term (see main body of the text) for Nf = 1,2,3 and lattice size 12×11×11. The right (orange) edge of the
plot is in the direction of the pure Gross-Neveu model, while the top (green) edge is in the direction of the
pure γ45-model.

γ45-model axis, while there is no evidence for this for Nf = 3. Nf = 4 is not shown here, since the
plot looks quite similar to Nf = 3. While this is only a very indirect signal and further investiga-
tions of the coupled Thirring model for larger flavour numbers and lattice sizes are needed, it again
points to a rather small critical flavour number of the Thirring model.

3. Fierz transformations

Another approach to obtain a directly accessible condensate for the Thirring model is to use
Fierz identities, relating different kinds of four-fermion interactions with each other. From now
on, we use the irreducible representation of the Clifford algebra, since then the identities are much
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simpler. The two-component spinors are denoted by χa and the number of irreducible flavours is
twice the number of reducible flavours: a = 1, . . . ,2Nf := Nf,irr. For our purposes, the following
identity is the most useful:(

χ̄
a
σµ χ

a)(
χ̄

b
σ

µ
χ

b
)
=−(χ̄a

χ
a)
(

χ̄
b
χ

b
)
−2
(

χ̄
a
χ

b
)(

χ̄
b
χ

a
)
. (3.1)

After performing a Hubbard-Stratonovich transformation, we obtain the equivalent Lagrangian

LFierz = χ̄a

[(
/∂ +φ

)
δ

ab +T ab
]

︸ ︷︷ ︸
=Dab

χb +
Nf,irr

4g2 TabT ba +
Nf,irr

2g2 φ
2, (3.2)

where an auxiliary scalar field φ and a hermitian matrix field Tab were introduced. The theory now
contains Nf

2 +1 real scalar degrees of freedom, which makes simulations with large Nf expensive.
Even worse, the Dirac operator Dab is not anti-hermitian any more. We do not expect a real and
positive spectrum, contrary to the original formulation of the irreducible Thirring model with even
Nf,irr. We performed simulations with an exact update algorithm and found indeed a very strong
sign problem. The action has a complex phase and, as shown in Figure 3, there is a region in cou-
pling space, where its averages are very close to zero, such that naive approaches like reweighting
are not possible.
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Figure 3: The weight factor 〈w〉 =
〈
e−i ImS

〉
for

different numbers of flavours in the Fierz version
(3.2) of the Thirring model with 6× 5× 5 lattice
points.
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Figure 4: Average value of the k-field of the new
fermion bag approach with Nf,irr = 1 from analyti-
cal computations and Metropolis simulations on a
2× 3× 3 lattice, compared with results from ordi-
nary rHMC simulations.

There are further possible rearrangements with Fierz identities, but they include even more
degrees of freedom and none of them is free of the sign problem. For example, there is an identity
that allows for an anti-hermitian Dirac operator, such that the eigenvalues are purely imaginary.
Now the action is real, but the sign problem is even worse, because the sign of the action switches
on nearly every update. Thus, Fierz identities do not provide a new way to gain insight into the
Thirring model, although the “reverse” application shows, that there are models with four-fermion
interactions, where we can get rid of the sign problem by using these identities.
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4. Fermion Bag Approach

In order to solve the sign problem of the models after Fierz transformation, we are currently
investigating an approach similar to the fermion bags first introduced in [20]. Performing the
integrals in the partition sum of the model given by (3.2) over the fermions and the additional
scalar fields, we get a dual formulation with a spin field kab

xi ∈ {0,1} and a final partition sum of

Z(λ ) ∝ ∑
k
(λ )−

k
2 det(/∂ [k])2ñ2

x ∏
x

f (n1
x ,n

2
x). (4.1)

/∂ [k] is the SLAC operator matrix, where rows and columns are deleted, when the corresponding
value of kab

xi = 1. The values n1
x ,n

2
x and ñ2

x count certain entries of the field and the function f (a,b)
is a combination of gamma- and confluent hypergeometric functions, which give an additional
local weight. Interestingly, this approach solves the sign problem for Nf,irr = 1, present in both the
original and the Fierz version of the irreducible Thirring model. Metropolis simulations of (4.1)
work well and are found to agree on very small lattices with the full analytically computed partition
sum (see Figure 4). Increasing the number of flavours poses new challenges and is still subject of
ongoing research.
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