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Understanding the role of the 6 parameter in QCD and its connection with the strong CP problem
and axion physics is one of the major challenges for high energy theorists. Due to the sign
problem, at present only the QCD topological susceptibility at low temperatures is well known.
Using an algorithmic approach that could potentially be extended to QCD, we study as a first step
the 6-dependence in the massive Schwinger model, and try to verify a conjecture of Coleman.
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1. Introduction

Our motivation is to understand the behavior of QCD with a 8-term. A better knowledge
of this system could provide some answers to open questions like the strong CP problem, or the
dynamics of the axion field. Moreover, if a method capable of computing observables of interest
in 0-like systems with dynamical fermions is developed, one could think about possible extensions
to other systems with a severe sign problem, like finite density QCD or other condensed-matter
models.

As a first step in this program, we present in this proceeding our current work in a toy model
of 0-QCD: the massive Schwinger model with a 0-term. We have analysed its 0-dependence by
means of a method developed in recent years [1], reviewed briefly in Section 2. Our intention has
been to perform a proof of concept, that is, check if it is feasible to use the method of [1] in a
toy model, keeping the rest of technical details as simple as possible, even if we had to sacrifice
some computational performance. In Section 3 we describe the principal features of the Schwinger
model, and present some preliminary results. Finally, we expose our conclusions and outline future
work in Section 4.

2. Dealing with 0-terms

The main difficulty that arises when we study a 0-like system is the infamous Sign Problem.
The 0-term adds to the lagrangian a pure imaginary term, and makes impossible to perform stan-
dard Monte Carlo simulations, at least at real values of the 8 parameter (which are the physical
ones). In a few cases it is possible to reformulate the physical degrees of freedom in such a way
that the new variables are completely free of it. However, this is not possible in the general case,
and other methods must be explored. In the last few years, there has been an intense activity trying
to overcome the sign problem: Complex Langevin Dynamics, Lefschetz Thimbles and Density of
States methods, have been used on a wide variety of lattice gauge field theories.

In our case, we have been using two different methods [2, 1] that allow to reconstruct the 0-
dependence of observables like the topological charge. Both methods share the same input data:
standard Monte Carlo simulations performed at imaginary (unphysical) values of the parameter 6.
This methods have been applied by us to a number of models, including the Ising model with an
imaginary magnetic field [3], CP' [4], CP? [5], CP® [6] and the O(3) nonlinear sigma model [7, 8],
obtaining quite satisfactory results. It must be noted that the first method [2], fails in systems where
the order parameter is not monotonous (i.e. when we have symmetry restoration at 6 = 7). But in
the cases where symmetry is spontaneously broken at 8 = 7, both methods can be used as a check
of consistency.

In the preliminary results presented in the next section, we will use the ¥, (v) exponent [1],
whose limit for y(y — 0)!, governs the behavior of the topological charge ¢ as 8 — 7 in the
following way:

q(0) < (m—0)"! as 0 — . 2.1

If we are able to compute the previous exponent ¥, (y) for small values of y, which is possible
via a standard (i. e. real action) Monte Carlo simulation, we can extrapolate to zero and find 7.

Note that y — 0 is the same limit that & — 7, provided that y = ¢(6)/tan(6/2) [1].
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If it is equal to one, we have spontaneous symmetry breaking of the given model at 6 = 7; on
the contrary, if y = 2 the symmetry is restored. And if ¥ € (1,2), we have a second order phase
transition.

3. The massive Schwinger model with a 6 term

The one-flavor massive Schwinger model is QED in 1+ 1 dimensions. Adding a 0-term, it
serves as a toy model for 6-QCD: it is a model with fermions, confining, that has a non-trivial
topology and shows explicitly the Uy (1) axial anomaly. Its euclidean continuum action is given by

i0

_ . _ 1
S = /dzx{wﬂ (O +iAy) y+myry + @Fﬁv + HeWF,W}. (3.1)

The behavior of the topological charge ¢ in this model depends on the fermion mass. At large m,
it tends to pure gauge two-dimensional electrodynamics, which is exactly solvable, and presents
spontaneous symmetry breaking at 6 = w. However, at small m, it is possible to expand the topo-
logical charge in powers of the mass [9]. Provided that the expansion converges, we have

(q) = mEsin 0 4+ O(m?), (3.2)

that is, we recover the symmetry. Separating the small and large fermion masses regimes we
expect a critical point, as conjectured by Coleman [10], and supported by strong numerical evidence
working in the Hamiltonian formalism [11, 12] and also in recent years with the Grassman tensor
renormalization group [13]°.

In order to perform the Monte Carlo simulation, we formulate the model in the lattice following
the standard conventions. We use the compact formulation for the link variables

Uy =Uy(n) =€'P; ¢ € [-m, 7, (3.3)

and the usual Wilson gauge action with staggered fermions:

$= 3 XA U (n-+ )~ U n— )~ )}
nu

+mY 2(n)x(n)—BY. R (Ug,) —i0) q(n), (3.4)

n

where g(n) is the local topological charge, defined as the sum of the phases ¢, of the plaquette
modulo 2. We also take the square root of the fermionic determinant in order to stay in the
one-flavor case.

Taking the above action, which is real-valued for imaginary values of 6, we can perform
our MC simulation. As this work is a proof of concept, we have chosen a standard Metropolis
algorithm. At each sweep of the algorithm, we try to update each link sequentially, re-evaluating
the fermionic determinant at each attempt. We have performed simulations at three different values
of the coupling 8 and at several fermion masses. The preliminary results we present below are

>These numerical methods are free of the sign problem , but they are limited to two-dimensional systems.
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computed in a 167 lattice, and are grouped by its value of B or the mass. Each point in the figures
is the result of two simulations with ~ 10° measurements.

Our preliminary results are presented in figures 1, 2 and 3, and the same data grouped in
a different way is displayed in figures 4 and 5. In all the plots we show the exponent ) (y),
computed from Monte Carlo simulations at imaginary values of 6, together with the pure gauge
(m — oo) analytical solution. In figure 1 we can see how the m = 0.50 data is lying, within the error
bars, over the m — oo curve, thus being compatible with an extrapolation to y = 1: the symmetry
then would be broken at & = m, as expected for masses over the critical point. The other two
masses show a different behavior: the data suggest that their extrapolations to zero go beyond
Y = 1, thus restoring the symmetry at 6 = 7, although it is unclear if they can arrive to Yy =2 or
somewhere in between. Figures 2 and 3 show a qualitatively similar behavior, but with bigger error
bars. Nevertheless, increasing the coupling 3 also allows us to reach lower values of y, making
the extrapolation easier. This can be seen in figures 4 and 5, which display the same data as the
previous ones, but for fixed mass.

With the previous considerations in mind, we can say that the preliminary results are at least
compatible with previous work, showing the existence of two different mass phases: one phase of
low mass that recovers the symmetry at 6 = &, and another of high mass where the symmetry at
6 = 7 is broken. Determining other properties, such as the precise position of the critical point,
would require a great optimization of the MC simulations, and is out of the scope of this work.

7. (y) for a 167 lattice, § =2
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Figure 1: The results of the exponent ) (y), computed from Monte Carlo simulations at imaginary 6,
together with the analytic solution of the infinite mass case (continuous curve). Different masses at 8 = 2.
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7. (y) for a 16 lattice, B =3
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Figure 2: As in the figure above, ¥ (y) from MC simulations at § = 3.
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Figure 3: 7, (v) for B = 4, results only for m = 0.
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71 (y) for a 16 lattice, m = 0
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Figure 4: Results for the exponent ) (y) at different 3 for m = 0.
7, () for a 162 lattice, m = 0.05
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Figure 5: Results for the exponent ; (y) at different 8 for m = 0.05.
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4. Conclusions and Outlook

There are methods that can treat systems with a 0-like term, which have been tested in a wide
variety of models, including the Ising model, CP?> or CP°. We have applied them to a toy model
of QCD with dynamical fermions, the massive Schwinger model with a 6-term, obtaining results
compatible with previous work. In principle, the methods described here should be applicable to
QCD with a 6-term. We are starting simulations, first in quenched QCD, to test concrete imple-
mentations of both the dynamics and the topological charge operator.
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