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We present a practical strategy to optimize a set of Hybrid Monte Carlo parameters in simulations
of QCD and QCD-like theories. We specialize to the case of mass-preconditioning, with multiple
time-step Omelyan integrators. Starting from properties of the shadow Hamiltonian we show
how the optimal setup for the integrator can be chosen once the forces and their variances are
measured, assuming that those only depend on the mass-preconditioning parameter.
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1. Introduction and basic definitions

Modern HMC algorithms require tuning of multiple parameters for an efficient generation of
configurations. The optimization of the parameters is a complicated task but has been achieved in
multiple ways in QCD [1]. Here we present a general strategy, based on the existence of a shadow
Hamiltonian, that can also be extended to strongly interacting BSM (Beyond Standard Model)
theories.
In the following we specialize ourself to the case of the Omelyan integrator [2] with α = 1/6. We
consider an SU(2) gauge group with a doublet of unimproved Wilson fermions in the fundamental
representation. For completeness the bare parameters of the simulation read β = 2.2 and m0 =
−0.72. For comparison the critical mass is estimated to be mcr '−0.77(1)1.

1.1 Shadow Hamiltonian

To each symplectic integrator corresponds an exactly conserved shadow Hamiltonian. In order
to introduce it we begin by writing the evolution operator as

exp
(

τ
d
dt

)
?= exp({H,?})≡ exp(τDH)? .

where τ is a fictitious time parameter, {·, ·} the Poisson bracket, H = T +S is the Hamiltonian of
the system, T the kinetic part for the conjugate momenta, S the action we want to simulate, and
DH ≡ DT +DS the associated operators. The Omelyan integrator is then given by the following
evolution operator

exp [ταDS]exp
[

τ

2
DT

]
exp [τ(1−α)DS]exp

[
τ

2
DT

]
exp [ταDS] ,

with α being a free parameter. By using the Baker-Campbell-Haussdorff (BCH) formula one
obtains that the conserved shadow Hamiltonian H̃ is related to the target one H to be simulated, by

H̃ = H + τ
2
{

6α2−6α +1
12

DS[DS(T )]+
1−6α

24
DT [DS(T )]

}
+O(τ4).

By setting α = 1/6 the second term vanishes and what remains is dependent on DS[DS(T )] =
{S,{S,T}}, which as we will see in the following is directly related to the forces entering in the
molecular dynamics simulations.

1.2 Mass preconditioning & multi time-scale

A way to reduce the fluctuations of the force is to employ mass preconditioning of the quark
determinant [3]. The definitions for the massive and hermitian Dirac operators are the following

Dm = D+m, Q = γ5Dm.

In the presence of mass preconditioning the probability distribution for the generation of configu-
rations splits in three parts

PS ∝

∫
D [φi,φ

†
1 ,φ2,φ

†
2 ]exp

(
− S[U ]︸︷︷︸

Gauge

−φ
†
1 (DD† +µ

2)−1
φ1︸ ︷︷ ︸

HMC

−φ
†
2

(
Q2

DD† +µ2

)−1

φ2︸ ︷︷ ︸
Hasenbusch

)
.

1We recall that theory is breaking chiral symmetry spontaneously and the current investigation show the theory is
QCD-like.
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Hence we are now dealing with three forces: Gauge, HMC, Hasenbusch. A further acceleration
can be achieved by considering multiple time-step integrators [1], which consists of taking different
integration step sizes for the different forces. We assume that in the outermost level there is the
evolution for S1 with time step δτ = τ f /n, in the middle the integrator for S2 with m steps and the
innermost is for S3 with k steps.
The shadow Hamiltonian associated to the Omelyan integrator with three time-scales and mass
preconditioning is a quite lengthy expression but by setting the parameter α = 1/6 it is given by

H̃ = H +
δτ2

72

[
{S1,{S1,T}}+

1
4m2 {S2,{S2,T}}+

1
16m2k2 {S3,{S3,T}}

]
+O(δτ

4).

We use the conventions adopted in [4, 5] and the above formula reduces to

H̃ = H +
δτ2

72 ∑
x,µ,a

[
TR,1

(
Faµ

1 (x)
)2

+TR,2

(
Faµ

2 (x)
)2

4m2 +TR,3

(
Faµ

3 (x)
)2

16m2k2

]
+O(δτ

4) (1.1)

≡ H +
δτ2

72 ∑
x,µ,a

(
|F1|2 +

|F2|2
4m2 +

|F3|2
16m2k2

)
+O(δτ

4)≡ H +δH +O(δτ
4),

that is a function only of the forces used during the simulations. We immediately see that the
shadow Hamiltonian is related to the different parts of the force weighted by the corresponding
normalization for the generators. Already at this point one can see what drove our assignments for
the different levels. We want to suppress the contribution of the bigger force (the gauge one) and
hence that will go in the innermost level, followed by the HMC force and finally the Hasenbusch
one at the outermost level.

2. Benchmarks in small volumes

In order to test the measurements of the Poisson brackets we check the scaling with δτ of
|∆H| ∝ δτ2 and |∆(δH)+∆H| ∝ δτ4, indeed, since H̃ is conserved along the trajectory, we have

∆H̃ = 0 = ∆H +∆(δH)+O(δτ
4) =⇒ ∆H =−∆(δH)+O(δτ

4). (2.1)

Another test is to measure directly ∆H along the trajectory and compare it with the one built from
the knowledge of the forces, eq. (2.1). We run one trajectory from a thermalized configuration with
the following set-up for the levels of integration

• level 0: Hasenbusch, n = 4,5, . . . ,20,
• level 1: HMC, m = 10,
• level 2: Gauge, k = 10.

The results for 84 and 164 volumes are showed in Fig. 1. It is worth to notice that the minimum of
∆H scales as predicted and when the minimum (or a maximum) is attained, then ∆H cannot grow
due to the existence of the shadow Hamiltonian, and it is well understood in terms of the various
underlying force contributions, see Figs. 1(b), 1(c).

3. Cost of a simulation and its minimization

Although the cost of a simulation is not unique we define it as

Cost =
#MVM

Pacc
.
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(a) Scaling of |∆H| and |∆(δH) +∆H|
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(b) ∆H history along a trajectory with n = 10.
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(c) ∆H history along a trajectory with n = 20.

Figure 1: Benchmarks for the Poisson brackets measurements.

The number of Matrix-Vector-Multiplications (# MVM) is machine independent2 . Furthermore
we neglect the autocorrelation since that conceivably has a mild dependence on µ and therefore
should be mostly contribute as an overall factor to the cost.
We link the acceptance Pacc to ∆H through the Creutz formula [6]

Pacc(∆H) = erfc
(√

Var(∆H)/8
)
,

and the connection between the variances of ∆H and δH is given by [7]

Var(∆H)' 2Var(δH).

We want to optimize the choice of parameters µ,n,m,k while keeping the integrator, the solver and
the number of Hasenbusch splittings fixed. The variance of δH can be written by using eq. (1.1),

2The gauge part contributes for a maximum of ∼5% of the cost, hence is negligible. We also took into account the
gauge part as a check and it does not affect the results of this work.
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Figure 2: Var(|Fi|2) as a function of µ for the different forces.

and neglecting the covariances3

Var(δH)' δτ4

(722)

[
Var(|F1|2)(µ)+

Var(|F2|2)(µ)
(4m2)2 +

Var(|F3|2)(µ)
(16m2k2)2

]
. (3.1)

The total average number of MVM is given in terms of the averages a each level by

#MVM = (2n+1)#MVM1(µ)+2n(2m+1)#MVM2(µ). (3.2)

The idea is to assume that Var(δH) and # MVM depend explicitly upon n,m and k as in eqs. (3.1,
3.2) and the dependence on µ of Var(|Fi|2) at fixed m0 is the only quantity to be modeled, see
Figs. 2, 3.
In Fig. 2 we show the variances for the different forces and their resulting fits. We can identify
two different regions: a strong dependence for small µ and a weak dependence for large µ . In the
weak dependence region we have an inverted hierarchy with respect to what was our choice. In
Figs. 3(a), 3(b) we show the number of MVMs per step and sub-step and their fits.

We can now build the cost as a function of n,m,k and µ . For simplicity we fix k = 10 and
in order to find the minimum in the other parameters we require Pacc & 70%4. With this set-
up we found the minimum, Costmin, to be at (n,m,µ) ' (5,3,0.3). In Fig. 4 we show the cost,
normalized to the minimum, and the acceptance in the plane (µ,n) and (µ,m), for definiteness
β = 2.2, m0 = −0.72, V = 324. In Fig. 4(a) we fix m = 3, and one can see that the minimum is
close to the boundary Pacc∼ 70%. By taking the cost of a simulation to be 1 <Cost/Costmin < 1.25
we see that the minimum is quite broad 0.2 . µ . 0.6 and 4 . n . 8. Same conclusions can be
drawn for the Fig. 4(b).

3We checked that those are indeed of negligible size.
4This requirement is needed for Creutz formula to hold true.

4



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
2
6
0

Optimize HMC performance A. Bussone

0 1 2 3 4 5

1600

1700

1800

1900

2000

μ

#
M

V
M

p
e
r

s
te

p
,
H

a
s
e
n
b
u
s
c
h

Volume 324: Hasenbusch n=15, HMC m=8, Gauge k=10

(a) #MVM1(µ) data and their fit.
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(b) #MVM2(µ) data and their fit.

Figure 3: Fitted quantities for the prediction of the acceptance and the cost function.
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(a) Cost/Costmin with m = 3 as function of µ and n.
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Figure 4: Cost/Costmin around the minimum (n,m,k)' (5,3,0.3).

Comparison with simulation
We have run a simulation around the minimum to test our assumptions so far. The results

are shown in Fig. 5, the blue line displays the prediction with the procedure described above, the
circle points are the directly computed raw data (no fit in µ was performed) and the square point
comes from the simulation. The results agree with both procedures within 10% that we consider
satisfactory for the approach used and our goals.

4. Conclusions

We presented a strategy to optimize the parameters of the Omelyan integrator with α = 1/6,
Hasenbusch mass preconditioning and three time-scales. Our method relies on the existence of a
shadow Hamiltonian.
The schematic recipe followed by this work is the following:
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Figure 5: Acceptance and cost at the minimum, comparison with simulation.

• Start with a reasonable choice for the simulation of (n,m,k). In the present work we used
conservative choices just to have a complete description to high values of µ .
• Measure the forces in each level, which we already computed for the evolution, and calculate
|Fi|2 = ∑x,µ,a TR,i

(
Faµ

i (x)
)2 and its variance Var(|Fi|2).

• Measure the number of MVMs in each level.
• By fitting the dependence in µ we are able to predict the acceptance and the cost dependence

on (n,m,k,µ) with accuracy within 10%.

The minimization of the cost with this method is cheap since it employs the forces already cal-
culated in the simulations. Generalizing it to a larger number of Hasenbusch levels on different
quark determinant splitting [8] is rather straightforward, especially as long as covariances can be
neglected. The results are encouraging and we plan to perform a study of the mass dependence
as well as to consider different strongly interacting BSM models. Many aspects, not covered for
space reason, will be discussed in a forthcoming publication.
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