
P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
2
7
0

MILC staggered conjugate gradient performance on
Intel KNL

Ruizi Li∗
Department of Physics, Indiana University, Bloomington IN 47405, USA
E-mail: ruizli@umail.iu.edu

Carleton DeTar
Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, 84112, USA
E-mail: detar@physics.utah.edu

Douglas Doerfler
National Energy Research Scientific Computing Center, Lawrence Berkeley National
Laboratory, Berkeley, CA 94720, USA
E-mail: dwdoerf@lbl.gov

Steven Gottlieb
Department of Physics, Indiana University, Bloomington IN 47405, USA
E-mail: sg@indiana.edu

Ashish Jha
Software and Services Group, Intel Corporation, Hillsboro OR 97124, USA
E-mail: ashish.jha@intel.com

Dhiraj Kalamkar
Parallel Computing Lab, Intel Labs, Bangalore, India 560103
E-mail: dhiraj.d.kalamkar@intel.com

Doug Toussaint
Physics Department, University of Arizona, Tucson, AZ 85721, USA
E-mail: doug@physics.arizona.edu

We review our work done to optimize the staggered conjugate gradient (CG) algorithm in the
MILC code for use with the Intel Knights Landing (KNL) architecture. KNL is the second gener-
ation Intel Xeon Phi processor. It is capable of massive thread parallelism, data parallelism, and
high on-board memory bandwidth and is being adopted in supercomputing centers for scientific
research. The CG solver consumes the majority of time in production running, so we have spent
most of our effort on it. We compare performance of an MPI+OpenMP baseline version of the
MILC code with a version incorporating the QPhiX staggered CG solver, for both one-node and
multi-node runs.

34th annual International Symposium on Lattice Field Theory
24-30 July 2016
University of Southampton, UK

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:ruizli@umail.iu.edu
mailto:detar@physics.utah.edu
mailto:dwdoerf@lbl.gov
mailto:sg@indiana.edu
mailto:ashish.jha@intel.com
mailto:dhiraj.d.kalamkar@intel.com
mailto:doug@physics.arizona.edu


P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
2
7
0

MILC Staggered CG Performance on Intel KNL Ruizi Li

1. Introduction

In recent decades, lattice calculations have been performed on high-end supercomputers and
clusters, looking for increased computing capability and capacity. The MILC collaboration has
been using GPU clusters, listed among the Top 500, for boosting its code performance. Computers
using Intel Xeon Phi processors, starting with the Knights Corner (KNC) coprocessor, and continu-
ing with the current generation Knights Landing (KNL) processor, are also on the Top 500 list. We
are porting the MILC code to the KNL processor and optimizing it through our participation in the
Intel Parallel Computing Center (IPCC) Program, at the IPCC at Indiana University. We are also
part of the NERSC Exascale Science Applications Program (NESAP). These programs provide us
with access to KNL and other Intel Xeon products.

This article is organized as follows. The second section gives a brief introduction to the KNL
architecture. The third section describes the library we developed for the staggered conjugate gra-
dient algorithm. The fourth section contains benchmarks and CG performance results, showing the
performance improvement and comparing with several Intel architectures. The conclusions are in
the final section.

2. Intel Xeon Phi Knights Landing architecture

Knights Landing is the second generation of the Intel Many Integrated Core (MIC) architecture
and the first standalone processor in the Xeon Phi series. Its peak performance of over 3 TFlop/s or
6 TFlop/s in double or single precision (DP or SP) is over two times higher than that of the KNC.
It is also more power efficient. In addition, it implements the new 512-bit AVX512 ISA and is also
compatible with prior vector ISA’s such as AVX2, AVX, and SSE. It can be attached to the Omni-
Path Fabric, which is an interconnection network recently developed by Intel. The network of the
clusters we used, however, is Infiniband. Each node contains one chip, with 64 to 72 cores (from
version 7210 to 7290) tiled in pairs. Each core has four threads and two 512-bit vector processing
units (VPUs), as opposed to four threads and one VPU for KNC. The other significant feature is the
in-package high bandwidth memory called MCDRAM with capacity of 8 or 16 GB. It offers up to
450 GB/s stream bandwidth and 380 GB/s read-only bandwidth. KNL can be configured in multiple
clustering and memory modes. Memory modes can be Cache, Flat or Hybrid where MCDRAM
is configured as memory-side cache (the Cache mode), or as memory (the Flat mode) or hybrid
(cache and memory). Clustering modes include, for instance, quadrant and hemisphere[1]. The
bus to off-board memory is a 6-channel DDR4 with up to 115 GB/s bandwidth.

3. Staggered QPhiX library

The staggered QPhiX library was first developed for KNC[2], adapted from the open-source
QPhiX library for Wilson quarks[3][4]. It has been extended to KNL, including single-mass and
multi-mass CG algorithms, and is being developed for other routines in the MILC evolution code.

The library supports three Intel-architecture instructions, i.e., SSE, AVX2, AVX512. It includes

1



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
2
7
0

MILC Staggered CG Performance on Intel KNL Ruizi Li

a code generator that generates an intrinsic kernel file for each targeted algorithm or routine, for
instance, staggered dslash. The other part of the library wraps kernel routines and contains higher-
level algorithms, such as staggered multi-mass CG. It achieves both OpenMP and MPI parallelism.

The top-level data layout is slightly different from that of the Wilson QPhiX library and is based
on the Grid library[5] developed by Peter Boyle. Data on the lattice is fused along three and four
dimensions, with respect to double and single precision. In double precision, on a lattice of size
Nx,Ny,Nz,Nt along x,y,z, t direction, data on sites (x,y,z, t),(x+Nx/2,y,z, t),(x,y+Ny/2,z, t), ...,
(x +Nx/2,y+Ny/2,z+Nz/2, t) is stored contiguously in memory, as shown in Figure 1. One
advantage of this is simplified data fetching on the boundary, which reduces to just one vector
permuting or swizzling intrinsic function.

Figure 1: Data layout showing two dimensions. The data is fused along both x and y directions. Data in the
same color (red, green, purple) is stored contiguously in memory and cache.

Lattice data is stored as arrays of structures of arrays, e.g.,

typedef Real *KS_Color_Vector[3][2][V ECLEN];

typedef Real *Gauge[8][3][3][2][V ECLEN];

where V ECLEN = 8 or 16 for DP or SP, respectively, and Real is double or f loat. Gauge fields
are stored 8-way, i.e., including both forward and backward links. This differs from the standard
MILC gauge field structure, which stores forward links only by default. The 8-way gauge storage
enhances data locality; thus we expect it to reduce the data access latency. The disadvantage,
however, is that it doubles the gauge memory footprint during the staggered CG inversion step.
A quantitative study of performance impact from two versions of the gauge storage has yet to be
carried out.

2



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
2
7
0

MILC Staggered CG Performance on Intel KNL Ruizi Li

4. Benchmarks and results

Our benchmarks focus on the double-precision staggered multi-mass CG algorithm. We op-
timize and benchmark this routine because it is the most time-consuming routine in the MILC
evolution code, taking over 80% of the time. As is well known, the staggered CG is memory-
bandwidth bound, and staggered multi-mass CG is even more severely bandwidth bound. We show
performance results in Gflop/s. Included in Table 1 is the list of machines we use for benchmarks.
Clusters listed are the Intel Endeavor cluster and the NERSC Cori (Phase 1) cluster. They provide
the Intel KNL, Broadwell, and Haswell architecture.

We use the application su3_rhmc_hisq as a sample executable, a staggered-fermion rational hy-
brid Monte Carlo evolution code, to compare multi-mass CG performance across baseline MILC
code with both MPI and hybrid MPI+OpenMP, and MILC with QPhiX optimization and hybrid
MPI+OpenMP. The number of quark masses is set around nine.

Figure 2 (L) shows the performance of the baseline MILC code with MPI on various lattice sizes
L4. The run is on one KNL 7250 node using 64 cores. Runs use as many as 256 MPI ranks, i.e.,
four ranks per core. As expected, using MCDRAM increases the performance up to three times.
The performance has a sweet spot at L = 24 or 28, with a peak value of around 65 Gflop/s. MC-
DRAM is used either in the Cache or Flat mode, and in our study those choices lead to less than
10% performance difference, with the Flat mode giving a slightly higher value. Thus, they are not
shown separately. The clustering mode is all-to-all, as used in most of our benchmarks. Comparing
different clustering modes has not been a significant performance tuning effort yet. We also used
quadrant clustering mode in some of our benchmarks, and have observed the performance similar
to all-to-all, which is consistent with the Wilson CG case[4]. Further study of clustering mode
effects is to be undertaken.

Cluster Machine Feature

64 Cores @ 1.3 GHz,
KNL 7210 8 or 16 GB MCDRAM,

6×16 GB DDR4 @ 2.1 GHz
68 Cores @ 1.4 GHz,

Intel Endeavor Cluster KNL 7250 8 or 16 GB MCDRAM,
6×16 GB DDR4 @ 2.4 GHz

Dual Socket processor E5Z2697 v4,
Broadwell 18 Cores/Socket, 36 Cores @ 2.3 GHz,

128 GB DDR4 @ 2.4 GHz

Dual Socket processor,
NERSC Cori Cluster Haswell 16 cores/socket @ 2.3 GHz,

128 GB DDR4 @ 2.1 GHz

Table 1: Clusters used for the benchmarks.

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
2
7
0

MILC Staggered CG Performance on Intel KNL Ruizi Li

Figure 2: Baseline single-node benchmark performance with MPI (left) and MPI+OpenMP (right). The
vertical axis shows the total performance. In the left plot the horizontal axis marks the lattice size L along
each dimension, and data in red and blue give the performance w/ and wo/ MCDRAM usage. Here the total
number of MPI ranks is 64, 128, and 256, and the number of cores used is 64. In the right plot the horizontal
axis marks the number of MPI ranks, and data in red and blue give the performance on KNL and Haswell.
The total number of MPI ranks here is 128 and 32, and the number of cores used is 64 and 32 on KNL and
Haswell, respectively.

To compare the efficiency of MPI and OpenMP parallelization on KNL, we carry out another
set of single-node runs. We fix the problem size at 203 × 64, and the total amount of hardware
resources, or equivalently total number of cores and OpenMP threads, while varying the number
of MPI ranks. The performance is shown in the right of Figure 2. These tasks compare KNL and
Haswell, in which the performance on KNL peaks at one MPI rank, while on Haswell, at two or
more MPI ranks. This is consistent with the fact that a Cori Phase 1 node contains two Haswell
chips while a KNL node has only one chip. The performance fluctuation with various MPI ranks
on KNL is much more severe than on Haswell. We expect this to be caused by load imbalance,
though we are searching for a definite explanation. The number of threads per core is set so each
machine gives its best performance, thus providing a fair comparison of the architectures. We see
the best performance on KNL is around twice that of Haswell.

We observe from benchmarks of the baseline MILC code that MCDRAM is the key point for
boosting the performance on KNL, whichever way we use it, and OpenMP seems to work a bit
better than MPI, at least on one KNL chip. We still find these to hold after optimizing the code
with QPhiX.

The performance of QPhiX staggered dslash increases with increased lattice size. The routine’s
model bandwidth is calculated as the least amount of data being fetched from memory, excluding
repeated fetching due to cache misses, and is up to 80% of the peak read bandwidth with hardware
prefetches only. The Intel VTune performance analysis software reports around 15% cache misses
in this routine.

4



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
2
7
0

MILC Staggered CG Performance on Intel KNL Ruizi Li

We compare performance before and after QPhiX optimization on one node in Figure 3, and mul-
tiple nodes in Figure 4. Figure 3 shows the weak scaling benchmark performance up to 64 cores
on a KNL 7250. Plots (a) and (b) use MCDRAM. Both the Flat mode (a) and the Cache mode
(b) give similar performance. On KNL, QPhiX performs best with one MPI rank per node on
one and multiple nodes, which is the parallelization configuration here and later in the multi-node
benchmark. Overall QPhiX gains 1.50x in performance over baseline MILC code. Plot (c) shows
the performance in the Flat mode without MCDRAM. As expected, performance saturates quickly
with an increased number of cores, due to the limited DDR4 bandwidth.

Figure 4 compares the weak scaling performance of two versions of the code on KNL and Broad-
well, with up to 16 nodes and up to 4-dimensional communications. The interconnect network
in both cases is Infiniband. Note that in this, and some other benchmarks, the number of threads
per core on KNL is set to be two, which gives the best overall performance including multiple
nodes. Scaling on multiple nodes up to 16 is optimized further, compared to single node. The
benefit comes from the non-blocking, one-time communication strategy, the same as in the Wilson
QPhiX library. On the 16-node KNL cluster, QPhiX delivers 900 GFlop/s. This represents a 2.20x
performance gain over baseline MILC. On the 16-node Broadwell cluster, the QPhiX gain is less
significant.

Figure 3: Optimized vs. baseline code weak scaling benchmark on one KNL 7250. The vertical axis shows
the total performance, and the horizontal axis shows the number of cores. Plots (a), (b), and (c) show the
performance in the Flat mode using MCDRAM, the Cache mode, and the Flat mode without MCDRAM
usage, respectively.

5. Conclusions

We optimize and benchmark the staggered multi-mass CG algorithm, developing the stag-
gered QPhiX library from the Wilson QPhiX library. We observe a performance improvement of
around 1.50x on one KNL chip, and 2.20x on multiple nodes up to 16. Future work includes further
improving the CG performance in staggered QPhiX, enabling software prefetch tuning, exploring

5



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
2
7
0

MILC Staggered CG Performance on Intel KNL Ruizi Li

Figure 4: Optimized (QPhiX) vs. baseline (MILC) code weak scaling benchmark on Broadwell (left) and
KNL 7210 (right) up to 16 nodes. The vertical axis shows the total performance in Gflop/s, and the horizontal
axis shows the number of nodes. The number of cores used per node is 60 on KNL and 32 on Broadwell.
The number of MPI ranks on KNL with QPhiX is one per node. Lattice size is 243 × 60 per node on both
machines.

various clustering modes, and optimizing other routines and algorithms in the MILC code, for in-
stance, the gauge force and the fermion force calculations.

Acknowledgments: Many thanks to Bálint Joó for great help and valuable discussions on building
and developing of the staggered QPhiX library. This work was supported in part by U.S. DOE
under grants DE-SC0010120 (S.G.), DE-FG02-13ER41976 (D.T.) and the U.S. NSF under grant
PHY10-034278 (C.D.). R.L. and S.G. thank Intel R© for its support of the Intel Parallel Computing
Center at Indiana University.

References

[1] Colfax research website, http://colfaxresearch.com/knl-numa/

[2] R. Li, S. Gottlieb, Staggered Dslash Performance on Intel Xeon Phi Architecture, PoS LATTICE
2014, 034 (2015) [arXiv:1411.2087 [hep-lat]].

[3] B. Joó et al., ISC 2013, Lecture Notes in Computer Science, Vol. 7905, 40 (2013), J.M Kunkel,
T. Ludwid, and WH.W. Meuer (Eds.).

[4] J. Jeffers et al., Intel Xeon Phi Processor High Performance Programming Knights Landing Edition,
Chap. 26, ISBN: 978-0-12-809194-4.

[5] P. Boyle et al., Grid: A next generation data parallel C++ QCD library, PoS LATTICE 2015, 023
(2015) [arXiv:1512.03487 [hep-lat]].

6


