PROCEEDINGS

OF SCIENCE

Introduction to the Quantum Expressions (QEX)
framework

James C. Osborn*
Leadership Computing Facility

Argonne National Laboratory

9700 S. Cass Ave.

Argonne, IL 60439, USA

E-mail: osborn@alcf.anl.gov

Xiao-Yong Jin

Leadership Computing Facility
Argonne National Laboratory
9700 S. Cass Ave.

Argonne, IL 60439, USA
E-mail: xjin@anl.gov

We present a new lattice field theory software framework designed with ease of use, flexibility, ef-
ficiency and portability in mind. The framework is written using the Nim programming language
which offers many of the features one would find in a high-level scripting language, while in fact
being a strongly-typed language with full control over low-level optimizations. This allows us to
present a simple expression-based language to the end user that can be transformed into highly
optimized code for a particular architecture. We will discuss the features of the QEX framework,
performance results and development plans.

34th annual International Symposium on Lattice Field Theory
24-30 July 2016
University of Southampton, UK

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:osborn@alcf.anl.gov
mailto:xjin@anl.gov

Introduction to QEX James C. Osborn

Over the past 15 years, the USQCD collaboration has been developing a comprehensive set
of libraries and application codes designed to provide a convenient abstraction over the common
operations performed in lattice field theory. These codes have been ported and optimized over a
large range of architectures. The design strategy called for a set of software “levels” with the higher
levels building on top of the lower ones.

The main interface intended for algorithm development is the Data Parallel layer. This layer
presents an abstraction over the lattice fields and handles their distribution across the machine along
with common math, communications and I/O routines. The data parallel layer was developed
as two separate libraries, one in C (QDP [1]) and one in C++ (QDP++ [2]). The C++ library
uses expression template (ET) techniques to allow data parallel operations based on mathematical
expressions to avoid lattice-wide temporary fields when possible. The use of ET was still relatively
new at the time and would often encounter compiler bugs in heavily templated code, making their
use difficult until compilers improved. To mitigate this risk, it was decided to also pursue a pure C
option (QDP along with the companion linear algebra library QLA) which contains a large set of
field operations that are generated by Perl scripts making generation of all the variants easier.

On top of the QDP C libraries, a library (QOPQDP) of common routines such as solvers, link
smearings and force terms was developed. This library also has a multigrid solver for Wilson clover
fermions [3]. In order to speed up application development, a set of applications were developed
that provided access to the USQCD C libraries through a scripting language. These applications
used the Lua scripting language [4] due to its ease of embedding into applications and simple yet
powerful features. Qlua [5] provided a Lua wrapper on the QDP library, while FUEL [6] provided
access to the QOPQDP library along with parts of QDP.

The Lua scripting layer provides a quick and easy way to develop code and is especially
convenient for things like algorithm exploration or sophisticated analysis workflows. It provides a
simpler environment for testing code since the scripts can be run without any further compilation
necessary (once the main application is compiled), and adding new files doesn’t require modifying
any build infrastructure, such as makefiles or header files. For operations that have optimized C
routines available, there is no performance disadvantage, however, for routines that aren’t already
available, constructing them from within the scripting layer may not be as efficient as if they were
constructed directly at the C level.

While the USQCD C/Lua frameworks have been very successful in providing rapid devel-
opment of efficient algorithm and application code, the basic design is not as suitable for future
architectures. The QDP and QLA layers were built on an Array of Structures layout that makes
vectorization difficult. QLA has gained threading through OpenMP, but this requires starting a
parallel region at every site loop. Furthermore it is desirable to find a way to provide a high-level,
easy to use script-like interface that can also have full control over low-level optimizations, so as
to avoid a need for separate high-level and low-level interfaces. It was therefore desirable to do a
full redesign of the software frameworks.

The initial work on the redesign began with experiments in the design of a new low-level
library with full threading and vectorization in mind. The end result of this was the proof-of-
concept QLL library [7] which contains new layout and communications routines along with some
hand tuned C code. The performance of the Naik staggered CG solver available here is up to 23%
of peak on BG/Q. With the base framework achieving good performance, work shifted to finding a

Introduction to QEX James C. Osborn

way to provide a new high-level interface.

The main design goal for the high-level interface was to have the ability to transform natural
expressions into well optimized code. We also wanted to have the ability to perform optimizations
across multiple expressions (e.g. loop fusion). Additionally, the simplicity of working with a
scripting language (i.e. the simple build environment, and avoid duplication such as with header
files and code files), was a highly desirable feature. After an extensive search of language and
code-generation options, we settled on the Nim [8] language as the best option.

1. Nim

Nim is a modern programming language that first appeared in 2008. The original goal was to
develop a safer alternative to C/C++, but since then it has continued to evolve an impressive list of
features and has attracted a growing interest from users and developers. The design goal is to be
“efficient, expressive, and elegant”. It borrows many of its features from a large list of languages
including Modula-3, Delphi, Ada, C++, Python, Lisp and Oberon. It is a statically typed language,
but has extensive type-inference, so it retains the look and feel of a dynamically-typed scripting
language. Some of its key features are an (optional) efficient garbage collector, extensive meta-
programming support (nearly full language available at compile time), module based imports (with
no separation of headers and code), integrated build system and it compiles to C or C++ code.

The fact that Nim compiles to C or C++ provides excellent portability. All one needs to
compile Nim code is a working C99 compiler. In addition the C/C++ code generation makes it
easy to integrate Nim code with other libraries. One can easily declare C/C++ types and functions
in Nim, then they can be used in Nim code and it will generate the appropriate C/C++ code. This
also allows one to use all the language extensions available to the C/C++ compiler such as intrinsics
(e.g. SIMD) and pragmas (e.g. OpenMP, OpenACC). In addition it is also possible to influence the
C code generator so as to generate proper CUDA kernels to run on a GPU [9].

The integrated build system makes compiling applications very easy. It will automatically
track module dependencies, compile all the Nim modules to C/C++ code, compile those to object
files (using the specified C/C++ compiler and flags), then link them together into an executable.
There are no separate build files that need to be maintained to specify what sources and steps are
needed to make the executable. For example if you want to create a new project from an existing
one, you can just copy the main program file, make some changes, then compile each program with
the command “nim ¢ myProject.nim”.

Another of the advantages of using Nim is its extensive metaprogramming support. Figure 1
lists Nim’s generic and metaprogramming features. Like C++ it has built-in support for generic
programming (similar to C++ templates). It also features inline code substitutions somewhat like
C++ preprocessor macros. However Nim’s version is an integral part of the language and designed
to be safer. They also allow overloading on argument types, which C++ doesn’t provide. Lastly
Nim has an extremely powerful macro system which is modeled after lisp. The body of the macro
executes at compile time and gives one access to the syntax tree of the arguments to the macro.
One can then inspect and manipulate the tree and return a new syntax tree that will be reinterpreted
as if it were originally part of the input code. This ability has no counterpart in C++, and allows
for a wide range of code transformations for optimization and the creation of easy to use domain
specific languages (DSLs).

Introduction to QEX James C. Osborn

C++ Nim

templates:
reprocessor ok o

Prep - inline code substitutions

Macros - also allows overloading, completely hygienic (if desired)
generics:

templates - applies to types, procedures, templates and macros
- also allows typeclasses, concepts
macros:

N/A - similar to lisp: syntax tree of arguments passed to macro at

compile time to allow arbitrary inspection and manipulation

Figure 1: Generic and meta-programming features of Nim along with C++ counterparts.
One example of macro use is transforming loops at compile time. Consider the Nim loop

for i in 0..2:

foo (1)

which generates code to iterate i from O to 2 at runtime and call the function foo on i. We can
define a macro forStatic to unroll the loop at compile time. Using this macro could look like

forStatic i, 0, 2:
foo (1)

This could be expanded to

block:
foo (0)

block:
foo (1)

block:
foo(2)

The block: statements are inserted to create a new scope in case the body of the loop were
to create new local variables. Without the new scope it would result in a redefinition of the local
variables. The macro that performs the unrolling can be written as

macro forStatic(index: untyped; a,b: staticl[int];
body: untyped) : untyped =
result = newStmtList ()
for x in a..b:
result.add newBlockStmt (body.replace (index, newLit (x)))

The index variable and the loop body are passed as untyped parameters, which means the macro
gets the raw expressions without any attempt to determine the types of the expressions passed in.
The loop bounds (a and b) are passed as static int’s which means that their values are known at
compile time. The result variable is an implicit variable available to all routines (functions, tem-
plates and macros) that return a value. The value of this variable is returned from the routine. We
first initialize it with an empty statement list, then iterate over the loop bounds and add statements
to it. Here we use another function replace (which we have written, but do not list here) to sub-
stitute all occurrences of the index variable (1 ndex, which in this case was passed the identifier 1)
in the loop body (body) with an int literal equal to the value of x.

Introduction to QEX James C. Osborn

Another example of using macros for optimization is in flattening complex data types. This
optimization was developed for the XLC compiler on BG/Q since it didn’t optimize temporary
objects containing SIMD vectors (vectorddouble) as well as it did when those objects are split into
individual SIMD variables. We designed a macro, opt imi ze, which will take a code block like

optimize:

var t: array[3, tuple[re: vectorddouble, im: vectorddouble]]

t[0].re =
t[0].im =

and turn it in to something like the following

var tOre: vectorddouble
var t0im: vector4ddouble
tOre
t0im =

Here the temporary variable t, which was an array of 3 complex numbers (here implemented as
a tuple) of SIMD vectors, is transformed into 6 individual SIMD vectors, and the instances where
the original variable was used are now modified to use the new variables. For this transformation to
work, we must have already unrolled all loops containing the temporary variables. Transformations
like this can give over a 2x performance gain on the BG/Q.

One last example of macro transformations is for the creation of a simple DSL for dealing
with tensor contractions [10]. A comprehensive tensor programming environment is being created
to make contractions, such as those appearing in analysis routines, both easy to write and very
efficient. A simple example of operations dealing with color vectors (v1 and v2) and a color
matrix (m) is

tpl:
v2 = 0
v2 += vl + 0.1
v3 +=m *x v2

This code will get transformed into something like

for j in 0..2:
v2[j] = 0
v2[3j] += v1[j] + 0.1
for k in 0..2:
v3[k] += m[k,] * v2[]]

Note that the j loop for v2 only appears once. The macro expansion recognized the redundant loop
and fused it across the three expressions. One can also use explicit indexing along with Einstein
notation (auto-summation) like

Introduction to QEX James C. Osborn

vli[al] = plmu,mu,a,b] x v2[b]
where the variables a, b and mu are implicitly summed.

2. New lattice framework in Nim: QEX (Quantum Expressions)

We have begun development of a new lattice field theory framework called QEX (Quantum
Expressions) [11] using the Nim language. The framework is using the same layout and communi-
cations support code from the QLL library. This code will eventually be converted from C to Nim,
but since Nim can easily work with C code, this hasn’t been a priority. We are currently using the
USQCD QMP [12] and QIO [13] libraries for message passing and I/O. A simple example of a
QEX program is below.

import gex
import gcdTypes

gexInit ()

var lat = [4,4,4,4]

var lo = newlLayout (lat)
var vl = lo.ColorVector ()
var v2 = lo.ColorVector ()
var ml = lo.ColorMatrix ()

threads: # start thread block (currently OpenMP parallel)
ml :=1
vl := 2
v2 = ml x vl
shift(vl, dir=3, len=1, v2) # len=+1: from forward
single: # execute only on single thread
if myRank==0:
echo v2[0][0] # vector "site" 0, color 0

gexFinalize ()

We currently have a staggered solver (plain and Naik) and simple staggered meson analysis
running in QEX, and have been working on optimizing the framework for BG/Q and KNL plat-
forms. The performance of the staggered solver on a single node Intel Xeon Phi 7210 (KNL) CPU
is shown in Figure 2. The performance of the full CG solver in GFlop/s is plotted versus the fourth
root of the lattice volume for a large range of lattice sizes, using 64, 128 or 256 OpenMP threads.
In all cases we can see a clear effect from the lattice size fitting in L2 cache for smaller lattice sizes.
For larger volumes the code is running mostly from MCDRAM.

3. Summary

We have started developing a new high-level framework for lattice field theory calculations.
For this we are using the Nim programming language to transform high-level expressions into
optimized C code. Based on our exploration of the language, we find that Nim offers extremely
useful set of features for developing optimized high-level frameworks for scientific computing.
We have a staggered CG solver running with very good efficiency using this new framework, and
are working on adding more physics capabilities along with improving optimization and exploring
performance portability across CPU and GPU architectures.

5

Introduction to QEX James C. Osborn

single precision one-link staggered CG Gflops

double precision one-link staggered CG Gflops

250 [" " " " " " R 250 [p

200 - 200
150 150

100 100

50 |- 50 |-

64 threads —+— |
128 threads

?56 threadf —k—

64 threads —— |
128 threads
I256 threadls —K—

single precision Naik staggered CG Gflops

0 L L L L 0 I I I I
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40

(lattice volume)/4 (lattice volume)l/4
T T 140 T T

140

120 - 120

100 - 100
80 - 80 -
60 - 60 -

40 40 -

20 - 64 threads —+— |
128 threads
I256 threadls —k—

20 I 64 threads —+— |
128 threads
‘256 threadf —K—

double precision Naik staggered CG Gflops

0 L L L L 0 I I I I
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40

(lattice volume)/4 (lattice volume)¥/4

Figure 2: CG solver performance on KNL for single (top) and double (bottom) precision. Left plots are for
the plain staggered (one-link) Dirac operator and right plots are Naik staggered (one-link + three-link).

Acknowledgments

This work was supported in part by and used resources of the Argonne Leadership Computing

Facility, which is a DOE Office of Science User Facility supported under Contract DE-ACO02-
06CH11357. X.-Y. Jin was also supported in part by the DOE SciDAC program.

References

(1]
(2]

(3]

[4]

[11]

[12]
[13]

USQCD, “SciDAC QFT Data Parallel library,” http://usqcd-software.github.io/qdp.

R. G. Edwards et al. [SciDAC and LHPC and UKQCD Collaborations], Nucl. Phys. Proc. Suppl. 140,
832 (2005) [hep-1at/0409003].

J.C. Osborn, R. Babich, J. Brannick, R.C. Brower, M.A. Clark, S.D. Cohen and C. Rebbi, PoS
LATTICE 2010 (2010) 037.

R. Ierusalimschy, L. H. de Figueiredo and W. C. Filho, “Lua—An Extensible Extension Language,”
Softw: Pract. Exper., 26: 635-652 (1996).

A. Pochinsky and Contributors, “Qlua—integration and optimization framework for lattice QCD,”
https://usqcd.Ins.mit.edu/redmine/projects/qlua.

J. C. Osborn, The FUEL code project, PoS LATTICE2014 (2014) 028.

J. C. Osborn, https://github.com/jcosborn/qll.

A. Rumpf and Contributors, “Nim Programming Language,” http://nim-lang.org.
J. C. Osborn, https://github.com/jcosborn/cudanim.

X.-Y. Jin and Contributors, “Tensor Programming Library in Nim for QEX,”
https://github.com/jxy/tpl.

J. C. Osborn and Contributors, “Quantum Expressions lattice field theory framework,”
https://github.com/jcosborn/gex.

USQCD, “QMP Message Passing Library,” http://usqcd-software.github.io/qmp/.
USQCD, “QIO Parallel IO Library,” http://usqcd-software.github.io/qio/.

