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As algorithmic developments have driven down the cost of simulating degenerate light quark fla-
vors the relative cost of simulating single quark flavors with the Rational Hybrid Monte Carlo
(RHMC) algorithm has become more expensive. TWQCD has proposed an exact one-flavor
algorithm (EOFA) that allows for HMC simulations of a single quark flavor without taking
a square root of the fermion determinant. We have independently implemented EOFA in the
Columbia Physics System (CPS) and BAGEL Fermion Sparse-Matrix Library (BFM) for Shamir
and Möbius domain wall fermions, and begun to optimize and test our implementation against
RHMC. In this talk we discuss the derivation of the EOFA action, our tests of its equivalence to
RHMC, and the current state of our implementation and optimization. We find, after introduc-
ing a novel preconditioning technique for the EOFA Dirac operator, that EOFA is a factor of 2.4
times faster than RHMC per molecular dynamics trajectory for the strange quark determinant on
an N f = 2+1 Möbius DWF ensemble with physical quark masses and a 243×64×24 volume.
We expect that further improvement is possible by retuning the integrator parameters for EOFA
and by continuing to optimize our code.
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1. Introduction

A number of recent developments in the hybrid Monte Carlo (HMC) algorithm used by the
RBC/UKQCD collaboration have driven down the cost of simulating degenerate quark flavor pairs.
These developments include: extensive force tuning via Hasenbush mass preconditioning [1], the
zMöbius domain wall fermion action [2], reduced Ls approximations to the light quark determinant
[3], and the use of mixed-precision methods in the conjugate gradient (CG) algorithm. On a recent
production run of a large volume, physical quark mass N f = 2+1+1 ensemble we observed that
the strange and charm quark determinants were collectively more expensive than the light quark
determinant. To address this, we have turned to exploring TWQCD’s exact one-flavor algorithm
(EOFA) [4] as an alternative to the rational HMC (RHMC) algorithm for single quark flavors. This
effort is further motivated by our I = 0 K → ππ simulations with G-parity boundary conditions,
where D†D describes four flavors and RHMC is needed for the light quark pair as well [5].

2. The Exact One-Flavor Algorithm

The exact one-flavor algorithm was introduced by TWQCD for efficient simulations of single
quark flavors on GPU clusters. In a series of papers the authors first demonstrate how to construct
a positive-definite pseudofermion action describing a single quark flavor for Wilson and domain
wall fermions [6]. They then benchmark EOFA against RHMC, finding a 20% speed-up and a
substantially reduced memory footprint for the case of EOFA [4, 7]. Their construction uses block
manipulations in spin space to factorize a ratio of fermion determinants as

det
[

D(m1)

D(m2)

]
=

1
det(ML)

· 1
det(MR)

, (2.1)

with ML and MR manifestly Hermitian and positive-definite. Contrast this with RHMC, where we
instead compute

det
[

D(m1)

D(m2)

]
=

{
det
[

D†D(m1)

D†D(m2)

]}1/2

(2.2)

using a rational approximation to the square root. Both algorithms are equivalent in the sense that
they compute the same determinant ratio, but EOFA has the advantage that it avoids the need for
computing an overall fractional power of the fermion determinant.

TWQCD’s construction in Ref. [4] begins with a factorization of the domain wall fermion
Dirac operator (DDWF). For our purposes we consider the Möbius kernel, and use the following
notation: α denotes the Möbius scale, c = α/2 and d = 1/2 are the weights along the fifth dimen-
sion, Dw is the Wilson-Dirac operator, Lss′ contains the 5D hopping terms, and (R5)ss′ = δs,Ls−1−s′

is the 5D reflection operator. Factoring out the terms multiplying Dw in DDWF results in

(DDWF)xx′,ss′ =
(
(c+d)Dw +1

)
xx′δss′+

(
(c−d)Dw−1

)
xx′Lss′

=
{
(Dw)xx′ δss′+δxx′D⊥ss′

}
·
{

d (1−L)+ c(1+L)
}

ss′

≡ (DEOFA)xx′,ss′ · D̃ss′ .

(2.3)
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One can show analytically that

det
(
D̃
)
=
(
(c+d)Ls +m f (c−d)Ls

)12V
(2.4)

where m f is the fermion mass, V is the 4D lattice volume, and Ls is the number of s sites. Since
this has no dependence on the gauge field, DDWF can be replaced with DEOFA in the path integral
without modifying the physics. This formalism has the advantage that H ≡ γ5R5DEOFA is Hermi-
tian even for Möbius DWF , but comes at the cost of evaluating the dense 5D operator D⊥ss′ .

The authors then show, using block manipulations in spin space and the Schur determinant
identity, that the factorization (2.1) holds with D=DEOFA. Defining ∆±≡R5

(
D⊥±(m2)−D⊥±(m1)

)
,

and observing that ∆± factorizes as ∆± = kΩ±Ω
†
±, the authors further demonstrate that this same

determinant ratio can be written as a pseudofermion path integral in terms of the action S f =

φ †MEOFAφ , with

MEOFA = 1− kP−Ω
†
− [H(m1)]

−1
Ω−P−+ kP+Ω

†
+ [H(m2)−∆+P+]

−1
Ω+P+. (2.5)

This is the final form of the EOFA action explored in this work.

In the following sections we perform tests of EOFA using two N f = 2 + 1 RBC/UKQCD
domain wall fermion ensembles. The properties of these ensembles are summarized in Table 1.

Ensemble Action β L3×T ×Ls Möbius scale aml amh mπ (MeV)
16I [8] DWF + I 2.13 163×32×16 — 0.01 0.032 400(11)

24ID [9] MDWF + ID 1.633 243×64×24 4.0 0.00107 0.0850 137.1(5)

Table 1: Summary of the ensembles used in this work. (M)DWF denotes (Möbius) domain wall
fermions, and I(D) denotes the Iwasaki gauge action (+ DSDR term) with coupling β .

3. Hybrid Monte Carlo with EOFA

The HMC algorithm generates a Markov chain of gauge field configurations by evolving a
Hamiltonian system describing the coupled dynamics of the gauge field and fermions in (unphys-
ical) molecular dynamics “time”. In the following subsections we discuss the details of HMC for
EOFA and our tests of each component.

3.1 Action

The EOFA action is given by (2.5). We verify our implementation and the correctness of the
formal derivation in Ref. [4] through the relationship suggested by (2.1) and (2.2): the EOFA and
RHMC actions should compute the same determinant ratio up to the normalization factor (2.4). We
verify that this is indeed true on a single configuration of the 16I and 24ID ensembles.
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Ensemble Nhits am1 am2 RHMC EOFA
16I 10 0.032 0.042 67.2(9) 67.1(1)

24ID 10 0.085 0.09 521.9(2.0) 520.0(2)

Table 2: Stochastic evaluations of − logdet(DDWF(m1)/DDWF(m2)) using RHMC and EOFA.

3.2 Heatbath

At the start of each HMC trajectory we draw a random pseudofermion field φ according to
P(φ) ∝ exp(−φ †MEOFAφ). This is accomplished by generating a random Gaussian vector η ,
and then computing φ = M

−1/2
EOFAη using a rational approximation x−1/2 ' α0 +∑

Np
l=1 αl/(βl + x).

Defining γl = (1+βl)
−1, one can show that the resulting rational approximation to M

−1/2
EOFA takes

the form

M
−1/2
EOFA ' α01+

Np

∑
l=1

αlγl

{
1+ kγlP−Ω

†
− [H(m1)− γl∆−P−]

−1
Ω−P−− kγlP+Ω

†
+ [H(m2)− γlβl∆+P+]

−1
Ω+P+

}
, (3.1)

requiring 2Np CG inversions to compute φ . These inversions are not amenable to a multishift CG
algorithm since the operators ∆±P± are singular, making the EOFA heatbath more expensive than
the RHMC heatbath. In practice, we observe that the eigenvalues of MEOFA cover a relatively small
interval, allowing us to accurately compute φ using a rational approximation with a modest number
of poles and partially ameliorate this cost.

3.3 Pseudofermion Force

The EOFA pseudofermion force is derived by varying (2.5) with respect to the gauge field:

∂
a
x,µS f [U ] = kχ

†
Lγ5R5

(
∂

a
x,µDw

)
χL− kχ

†
Rγ5R5

(
∂

a
x,µDw

)
χR, (3.2)

with χL ≡ [H(m1)]
−1

Ω−P−φ and χR ≡ [H(m2)−∆+P+]
−1

Ω+P+φ . This can be evaluated at the
cost of two CG inversions, in contrast to the corresponding RHMC force evaluations, which re-
quire three multishift CG inversions. In Figure 1 we plot distributions of the magnitude of the
pseudofermion force associated with each gauge link on a single configuration of the 16I en-
semble, and confirm TWQCD’s observation that the average EOFA force is somewhat smaller
in magnitude than the average RHMC force. While TWQCD has reported a speed-up by using a
Sexton-Weingarten integration scheme to exploit the asymmetry in the size of the left-handed and
right-handed EOFA force contributions [7], we have yet to explore this direction in our work.

4. Reproduction of the 16I Ensemble Using EOFA

As a final test of EOFA we ran two, parallel streams to reproduce the 16I ensemble using the
parameters in Ref. [8]. On one stream the RHMC action was used to evolve the strange quark, and
on the other stream the EOFA action was used to evolve the strange quark; otherwise the evolutions
are identical. We generated 1500 trajectories of each stream, and then compared a number of
observables — including the plaquette, topological susceptibility, and pion and kaon masses and
decay constants — measured every ten trajectories from 500 to 1500. We find complete agreement
within the computed statistical errors. We also observe similar rates of topological tunneling, with
the caveat that a proper study of the autocorrelation time would require a longer run.
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Figure 1: Left (24ID): Relative error in the heatbath step as a function of the number of poles in the
rational approximation (3.1). Middle (16I): Lattice-wide distribution of EOFA and RHMC total
forces by gauge link. Right (16I): Lattice-wide distribution of EOFA force contributions from L
and R terms by gauge link. Vertical dashed lines mark the average of each distribution.

EOFA RHMC EOFA RHMC
RMS 〈∆H〉 0.23(2) 0.20(2) amπ 0.243(2) 0.244(1)
〈exp(−∆H)〉 1.00(2) 0.98(2) amK 0.326(2) 0.326(1)
〈P〉 0.58807(3) 0.58808(4) amΩ 0.990(9) 0.995(10)

χt =
〈
Q2
〉
/V 4.5(7)×10−5 3.5(5)×10−5 a fπ 0.0887(8) 0.0883(6)

am′res(ml) 0.00305(4) 0.00306(4) a fK 0.0966(6) 0.0963(4)

Table 3: Results for some basic observables on the 16I ensemble in lattice units.

5. Performance Improvements

In this section we discuss various algorithmic refinements to the basic EOFA formalism, and
benchmark EOFA against RHMC on the 24ID ensemble. Each MD trajectory of the 24ID ensemble
consists of 12 steps of a nested force gradient QPQPQ integrator, with the strange quark on the
outermost time step. Timings are reported for a 256-node BG/Q partition.

5.1 Accelerating EOFA Inversions

Since the majority of the computational effort in an HMC evolution lies in repeatedly inverting
the Dirac operator, techniques to accelerate these inversions can lead to substantial increases in the
overall efficiency of the evolution. In the context of EOFA, the linear system we invert takes the
general form

(H +αl∆±P±)ψ = φ . (5.1)

We have introduced a number of such refinements, including: even-odd preconditioning, Cayley-
form preconditioning1, and the use of mixed-precision CG. In the left panel of Figure 2 we show
the successive improvements in inversion time as each of these techniques is introduced for a single
inversion of (5.1) at the strange quark mass on the 24ID ensemble.

1This is a novel technique specific to EOFA, which exploits the relationship DDWF = DEOFA · D̃ from Eqn. (2.3)
to right-precondition Eqn. (5.1), resulting in an equivalent linear system in terms of DDWF rather than DEOFA. Since
the 5D structure of DEOFA is dense, whereas the 5D structure of DDWF has a tridiagonal Cayley form, this results in a
preconditioned system that is substantially cheaper to solve.
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5.2 Forecasted Solutions for the Heatbath Step

The EOFA heatbath requires (5.1) to be simultaneously solved for 2Np values of αl , arising
from the rational approximation to M

−1/2
EOFA. Like TWQCD, we use the chronological inversion

technique introduced by Brower et al. [10] to forecast solutions for a given αl from previous solu-
tions for other {αl}. We observe that by the tenth pole the iteration count has been approximately
halved relative to using zero or the solution for the previous αl as the initial CG guess.

0 20 40 60 80 100 120 140 160
Time (s)

10−10

10−8

10−6

10−4

10−2

100

R
es

id
ua

l

Ref.: RHMC multishift
No precond.
E-O precond.
( E-O + C ) precond.
( E-O + C ) precond. + mixed CG

0 4 8 12 16 20
Pole

0

500

1000

1500

2000

2500

3000

C
G

It
er

at
io

ns
Zero
Last Solution
Forecasted

Figure 2: Left: wall clock inversion time for a single EOFA strange quark solve on the 24ID
ensemble as the acceleration techniques described in Section 5.1 are introduced. We find an overall
31.8× speed-up, and a 3.5× speed-up relative to an even-odd preconditioned multishift inversion
of D1/2

DWFψ = φ at the strange quark mass. Right: CG iteration counts for each solve in the EOFA
heatbath comparing the different schemes for the initial guesses described in Section 5.2.

5.3 HMC Timing Benchmarks

In Table 4 we compare timings for a single MD trajectory using RHMC and EOFA with and
without Cayley-form preconditioning. The details of the ensemble parameters and force gradient
integrator are identical except for the choice of strange quark action. We find that without this tech-
nique RHMC and EOFA break even: the expensive heatbath and cost of inverting DEOFA negate
the expected gain from the simpler form of the energy and force evaluations. Once Cayley-form
preconditioning is introduced, we observe a 2.4× speed-up over RHMC. We expect that by opti-
mizing our code and retuning the details of the force gradient integrator for EOFA a speed-up of
3× or more should be possible.

6. Conclusion

We have independently implemented and tested TWQCD’s exact one-flavor algorithm. We
find, after optimizing, that the HMC evolution of the strange quark is 2.4 times faster per trajectory
with EOFA for a 243×64×24 physical mass Möbius domain wall fermion ensemble. The key to
this improvement is a preconditioning technique that relates inversions of DEOFA to cheaper inver-
sions of DDWF. We expect that further improvements are possible, and are working to implement
EOFA with G-parity boundary conditions for our ongoing I = 0 K→ ππ calculation [5]. We will
elaborate on the details of our EOFA implementation in a forthcoming publication [11].
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RHMC EOFA (dense) EOFA (Cayley precond.)
Step Time (s) % Time (s) % Time (s) %

Heatbath 42.9 2.0 340.6 15.1 160.1 18.4
Force gradient integration (total) 1865.2 88.9 1840.6 81.8 684.0 78.7

Final Hamiltonian evaluation 189.4 9.0 68.8 3.0 25.0 2.9
Total 2097.5 — 2250.0 — 869.1 —

(Total RHMC) / Total 1.00 — 0.93 — 2.41 —

Table 4: Strange quark timings for a single 24ID MD trajectory on a 256-node BG/Q partition.
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