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The conventional implementation of the inclusive hadronicτ decay data based, flavor-breaking

(FB) finite-energy sum rule (FESR) determination ofVus is know to produce results> 3σ low

compared to kaon physics based results and 3-family-unitarity expectations. We revisit this imple-

mentation, showing that it fails a number of self-consistency tests, and that the problems originate

from a breakdown of assumptions employed for treating higher dimension OPE contributions.

A recently proposed alternate implementation, which curesthese problems, and uses lattice data

to more reliably quantify leadingD = 2 OPE uncertainties, is then briefly reviewed. Employing

this new implementation, using also preliminary BaBar results for the τ → K−π0ντ exclusive

branching fraction, yields a result,Vus = 0.2228(23)exp(6)th, in excellent agreement with that

from Kℓ3, and, within errors, with three-family-unitarity expectations. Limitations in the near-

term possibilities for reducing the experimental error by the desired factor of∼ 2 reduction are

then highlighted. These serve to motivate a new proposal fordeterminingVus via a dispersive

analysis employing strange hadronicτ data and lattice data in place of the OPE.
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1. Introduction

Using |Vud |= 0.97417(21) from super-allowed 0+ → 0+ nuclearβ decays [1] as input to the
three-family-unitary relation leads to the expectation|Vus|= 0.2258(9). This is compatible, within
errors, with the results of direct determinations fromKℓ3 andΓ[Kµ2]/Γ[πµ2], using the recent 2014
FlaviaNet experimental results,f+(0)|Vus| = 0.2165(4) and | fKVus|/| fπVud | = 0.2760(4) [2] and
2016 FLAGn f = 2+ 1+ 1 lattice input, f+(0) = 0.9704(33) and fK/ fπ = 1.193(3) [3], which
yield |Vus|= 0.2231(9) and 0.2253(7), respectively.

Much lower values are obtained from conventional implementations of FB FESR analyses of
inclusive non-strange and strange hadronicτ decay distributions [4], the most recent update of this
approach [5] producing, for example, a result

|Vus|= 0.2176(21) , (1.1)

3.6σ lower than the three-family-unitarity expectations.
In the Standard Model (SM), withRV/A;i j ≡ Γ[τ−→ ντ hadronsV/A;i j (γ)]/Γ[τ−→ ντ e−ν̄e(γ)],

the differential distributions,dRV/A;i j/ds, for flavor i j = ud, us, vector (V) or axial vector (A) cur-

rent mediated decays are related toρ(J)
V/A;i j, the spectral functions of theJ = 0,1 scalar correlators,

Π(J)
V/A;i j, which characterize the flavori j, V or A current-current two-point function, by [6]

dRV/A;i j

ds
=

12π2|Vi j|
2SEW

m2
τ

[

wτ (yτ )ρ
(0+1)
V/A;i j(s)−wL(yτ )ρ

(0)
V/A;i j(s)

]

,

≡
12π2|Vi j|

2SEW

m2
τ

(1− yτ )
2 ρ̃(s) , (1.2)

where yτ = s/m2
τ , wτ (y) = (1− y)2(1+ 2y), wL(y) = 2y(1− y)2, ρ̃(s) = (1+ 2yτ )ρ

(1)
V/A;i j(s) +

ρ(0)
V/A;i j(s), SEW is a known short-distance electroweak correction, andVi j is the flavori j CKM ma-

trix element. The accurately known, non-chirally-suppressedπ andK pole contributions dominate
ρ(0)

A;i j(s), up toO
[

(mi ∓m j)
2
]

continuum V and A corrections, which are negligible fori j = ud, and
small for i j = us. With the latter estimated (in a mildly model-dependent manner) from associated
i j = us scalar and pseudoscalar sum rules [7, 8], the experimentaldRV/A;i j/ds distributions provide

direct determinations ofρ(0+1)
V/A;ud,us(s).

|Vus| can be determined from inclusive FBτ decay data using FESRs involving the FB polar-
ization difference,∆Πτ ≡ Π(0+1)

V+A;ud − Π(0+1)
V+A;us, and associated spectral function,∆ρτ ≡ ρ(0+1)

V+A;ud −

ρ(0+1)
V+A;us [4]. Generally, for anys0 > 0 and anyw(s) analytic in the region|s| ≤ s0,

∫ s0

0
w(s)∆ρτ (s)ds = −

1
2πi

∮

|s|=s0

w(s)∆Πτ (s)ds . (1.3)

Experimental data is to be used on the LHS and, for large enough s0, the OPE on the RHS. For gen-
eralw, one must first construct theJ = 0+1 analogue,dR(0+1)

V/A;i j/ds, of dRV/A;i j/ds by subtracting
J = 0 contributions, and then form the re-weighted integrals

Rw
V+A;i j(s0)≡

∫ s0

0
ds

w(s)
wτ (s)

dR(0+1)
V+A;i j(s)

ds
. (1.4)
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Then, using the OPE representation of the FB difference

δRw
V+A(s0) ≡

Rw
V+A;ud(s0)

|Vud |2
−

Rw
V+A;us(s0)

|Vus|2
, (1.5)

given by the LHS of Eq. (1.3), one finds, solving for|Vus| [4],

|Vus| =

√

Rw
V+A;us(s0)/

[

Rw
V+A;ud(s0)

|Vud |2
− δRw,OPE

V+A (s0)

]

, (1.6)

where the resulting|Vus| will be independent ofs0 and w if all experimental and OPE input is
reliable. Checking for stability ass0 andw are varied thus allows one to expose problems and/or
test for self-consistency.

The low values of|Vus| noted above result from a conventional implementation of Eq. (1.6) [4]
employing the singles0 value,s0 =m2

τ and single weightw=wτ . With these choices, the associated
spectral integrals are fixed by the inclusive non-strange and strange branching fractions. Self-
consistency tests using variables0 andw are then no longer possible. Withwτ having degree 3,
unsuppressed OPE contributions up to dimensionD = 8 are present inδRwτ ,OPE

V+A (s0). D = 2 and
4 contributions are known [9], being fixed byαs, mu,d , ms, 〈ūu〉 and〈s̄s〉 [3, 10, 11]. D = 6 and
8 condensates, however, are not known experimentally.D = 6 contributions have typically been
estimated using the very crude vacuum saturation approximation (VSA) andD = 8 contributions
neglected [4, 12]. The lack of self-consistency tests in thestandard implementation makes these
“approximations” potentially dangerous, especially in view of the known crudeness of the VSA in
theud sector [13] and the very strong (factor of∼ 20) cancellation in the FBD = 6 VSA estimate.

2. Problems with the conventional implementation and an alternate strategy

2 2.5 3
s
0
 [GeV

2
]

0.215

0.22

0.225

0.23

|V
us

|

wτ(y)
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Figure 1: Left panel:|Vus| from thewτ andŵ FESRs with conventional OPE input (including contour im-
proved perturbation theory for theD = 2 series). Right panel: Comparison of conventional implementation
results (solid lines) with those obtained using central fittedC6,8,10 and the fixed order perturbation theory
D = 2 prescription favored by lattice results, for the weightsw2,3,4 (dashed lines).

Figure 1 shows the results for|Vus| as a function ofs0 obtained using a range ofw and the
conventional implementation assumptions forD = 6 and 8 OPE contributions. Very significants0-
andw-dependence is observed. Particularly illuminating is a comparison of the results from the
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wτ (y) = 1− 3y2 + 2y2 and ŵ(y) = 1− 3y+ 3y2 − y3 (y = s/s0) FESRs, whose integratedD = 6
OPE contributions are equal in magnitude but opposite in sign. In the conventional implementa-
tion, D = 6 contributions are small andD = 8 contributions negligible for thewτ FESR. If these
approximations are reasonable forwτ , they should be similarly reasonable for ˆw, and the|Vus| re-
sults obtained from the two FESRs should agree well and both display goods0 stability. If not,
the two FESRs should displays0-instabilities of opposite signs. Moreover, since integrated D = 6
and 8 contributions scale as 1/s2

0 and 1/s3
0, the difference between the the output|Vus| from the two

FESRs should decrease with increasings0. Obviously it is the second scenario which is realized.
The break down of the conventional implementation assumptions suggested by these results is fur-
ther confirmed by thes0-instabilities of the solid lines of the right panel of Figure 1, which show the
conventional implementation results for|Vus| obtained from thewN(y) FESRs,N = 2,3,4, where

wN(y) = 1−
N

N −1
y+

1
N −1

yN . (2.1)

These results suggest an alternate implementation in whichassumptions aboutD > 4 contributions
are avoided and the effectiveD > 4 condensates,CD>4, are instead obtained from fits to data,
taking advantage of the differings0-dependence of differentD OPE contributions. The dashed
lines show the much improved stability obtained when such fittedCD>4 are employed as input to
thewN FESRs.

Another issue for the FB FESR approach is the slow convergence of the relevantD = 2 OPE
series. To four loops, one has, neglectingO(m2

u,d/m2
s ) corrections [9]

[

∆Πτ (Q
2)
]OPE

D=2 =
3

2π2

ms(Q2)

Q2

[

1+
7
3

ā+19.93ā 2 +208.75ā 3+ · · ·

]

, (2.2)

with ā= αs(Q2)/π, andαs(Q2) andms(Q2) the runningMS coupling and strange quark mass. With
ā(m2

τ )≃ 0.1, theO(ā3) term exceeds theO(ā2) term at the spacelike point on the contour|s| = s0

for all kinematically accessibles0, complicating the task of choosing an appropriate truncation or-
der and estimating the associated truncation uncertainty.This issue was investigated by comparing
OPE expectations ton f = 2+1 RBC/UKQCD lattice data [14] for∆Πτ (Q2) over a range of Eu-
clideanQ2 [15]. An excellent match of theD = 2+4 OPE sum to the lattice data was obtained over
an interval stretching fromQ2 ∼ 10GeV 2 down to∼ 4 GeV 2 using the 3-loop-truncated version of
theD = 2 series with a fixed- rather than local-scale treatment of logarithmic contributions [15].1

The high-Q2 comparison also demonstrates that conventionalD = 2+ 4 OPE error estimates are
extremely conservative [15]. Deviations of theD = 2+ 4 OPE sum from the lattice data below
Q2 ∼ 4 GeV 2 [15] are also clearly incompatible with the conventional implementation assumptions
regarding the effectiveD > 4 OPE condensates.

An alternate implementation of the FB FESR approach, predicated on the observations above,
was presented in Ref. [15]. The theory side employs the 3-loop-truncated, FOPT version ofD = 2
OPE contributions favored by the lattice, and fits|Vus| and the relevant effectiveD> 4 OPE conden-
sates using thes0-dependentwN-weighted spectral integrals. Spectral integrals are evaluated using

1The fixed-/local-scale treatment of[∆Πτ ]
OPE
D=2 is the analogue of the “fixed-order” (FOPT)/“contour-improved”

(CIPT) treatment of theD = 2 contribution on the OPE side of the FSER relation.
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πµ2, Kµ2 and SM expectations for theπ andK pole contributions, ALEPH continuumud V+A
data [16], Belle [17] and BaBar [18, 19] results for thēK0π− andK−π0 distributions, BaBar [20]
and Belle [21] results for theK−π+π− andK̄0π−π0 distributions, and 1999 ALEPH results [22]
for the sum of the distributions of those exclusive strange modes not remeasured by the B-factory
experiments. Two different versions exist for theK−π0ντ branching fraction, which normalizes the
corresponding exclusive distribution: 0.00433(15) from the 2014 HFAG summer fit [23], and the
preliminary BaBar thesis update 0.00500(14) [19]. The latter is favored by BaBar, whose earlier
result dominates the 2014 HFAG average. Central results below correspond to the latter choice.

The wN FESRs have the advantage that they involve, in addition to the knownD = 2 and 4
terms, only a single unknownD = 2N + 2 OPE contribution. Fits to thewN FESR (N = 2,3,4)
thus yield|Vus| andC2N+2. The|Vus| from the differentwN FESRs are in excellent agreement [15].
With theC2N+2 obtained from these fits as input to the conventional implementation of thew2,3,4

FESRs yield the results shown by the dashed lines in Figure 1,which display excellents0- and
w-stability. The excellent consistency allows a final resultfor |Vus| to be obtained using a combined
3-weight fit. Normalizing the exclusiveK−π0 distribution using the preliminary BaBar update for
theτ− → K−π0ντ branching, one finds [15]

|Vus| = 0.2228(5)th(23)exp . (2.3)

The theory error is dominated by the uncertainty in〈mss̄s〉, the experimental error by the the strange
exclusive distribution errors [15]. This result agrees well with that fromKℓ3, and, within errors, with
3-family unitarity expectations.2 Compared to the conventional implementation results, roughly
half of the improved agreement results from the data-based treatment of higherD OPE contribu-
tions, and half from the new preliminary BaBarK−π0ντ branching fraction normalization.

Table 1: Relative contributions to thewN-weightedus spectral integrals in thes0 fit window employed in the
alternate FB FESR implementation.Kπ column entries are the sum of theK−π0 andK̄0π− contributions,
Kππ(B factory) column entries the sum of theK−π+π− andK̄0π−π0 contributions, andResidual column
entries the contributions of the residual part of the 1999 ALEPH distribution.

Weight s0 K Kπ Kππ Residual
[GeV 2] (B-factory)

w2 2.15 0.496 0.426 0.062 0.017
3.15 0.360 0.414 0.162 0.065

w3 2.15 0.461 0.446 0.073 0.019
3.15 0.331 0.415 0.182 0.074

w4 2.15 0.441 0.456 0.082 0.021
3.15 0.314 0.411 0.194 0.081

Improvements to the low-multiplicity strange exclusive branching fractions would allow for
significant reductions in the error on|Vus| obtained from the new implementation of the FB FESR

2Normalizing theK−π0 distribution with the HFAG 2014τ− → K−π0ντ branching fraction yields instead|Vus| =

0.2200(5)th(23)exp, 0.0024 higher than obtained from the conventional implementation using the same input. Further
work on the branching fraction of this mode is desirable.
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approach. Uncertainties in the combined, higher-multiplicity 1999 ALEPH “residual mode” distri-
bution, however, are likely to prove an important limiting factor in the near future. The errors on the
weighted spectral integrals over this residual distribution are∼ 25%. A competitive determination
of |Vus| requires sub-0.5% precision, which requires sub-% precision on the weighted inclusiveus
spectral integrals. The relative contributions of the lower-multiplicity exclusive modes, as well as
that of the residual mode sum, to the inclusive weightedus spectral integrals for thew2, w3 andw4

FESRs are shown in Table 1 at the lowest and highests0 of the analysis fit window.

The∼ 25% residual mode errors correspond to∼ 2% errors on the inclusiveus spectral in-
tegrals at the lower end of thes0 fit window, indicating that a factor of∼ 2 or more improvement
would be required in the normalization of the residual mode sum to make the FB FESR approach
fully competitive with kaon-physics-based determinations.

A way around this current limitation is to switch to a dispersive analysis based on the inclu-
sive us data alone in which weights are chosen that allow lattice data to be used in place of the
OPE [15] on the theory side of the dispersion relations. Thisworks as follows. From Eq. (1.2),
the experimentaldRus;V+A/ds distribution provides a direct determination of|Vus|

2 ρ̃(s), with no
even mildly model-dependent continuumJ = 0 subtraction required. The combinationρ̃(s) is the
spectral function of the kinematic-singularity-freeJ = 0 and 1us V+A polarization combination,

Π̃us;V+A(Q
2)≡

(

1−2
Q2

m2
τ

)

Π(J=1)
us;V+A(Q

2)+Π(J=0)
us;V+A(Q

2) , (2.4)

whereQ2 = −s. Choosing weights,WN(s),

WN(s) ≡
1

∏N
k=1(s+Q2

k)
, (2.5)

which have poles at theN distinct Euclidean locationsQ2 = Q2
1, · · · Q2

N , Q2
k > 0, one has, forN ≥ 3,

the convergent, unsubtracted dispersion relation

∫ ∞

th
dsWN(s) ρ̃us;V+A(s) =

N

∑
k=1

Π̃us;V+A(Q2
k)

∏ j 6=k

(

Q2
j −Q2

k

) . (2.6)

Lattice data is to be used to evaluate theΠ̃us;V+A(Q2
k) on the RHS of this relation. This can be done

with good accuracy if allQ2
k are kept to a few to several tenths of aGeV 2. Thes ≤ m2

τ contribution
to the LHS is determinable, up to the unknown factor|Vus|

2, from experimentaldRus;V+A/ds data.
To control errors on the LHS, the number,N, and locations,Q2

1, · · · ,Q
2
N , of the poles, are to be

chosen such that contributions from both the region whereus data errors are large and the region
s > m2

τ (where data do not exist and pQCD is used forρ̃(s)) are very small. This goal can be
accomplished by keeping allQ2

k below ∼ 1 GeV 2 and choosingN large enough. IncreasingN,
however, increases the errors on the lattice side of Eq. (2.6) (the level of cancellation in the sum
of residues appearing there grows with increasingN). The error on|Vus| extracted using Eq. (2.6)
is minimized by optimizing the choice ofN and pole locations, subject to these two competing
constraints. A preliminary implementation of this approach is described in the write-up of H.
Ohki’s presentation, in these proceedings.
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