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Current correlators in the coordinate space at short distances Masaaki Tomii

1. Introduction

Current correlators provide a rich source of information on the QCD vacuum. Their char-
acteristics vary depending on the distance between the currents. Correlators at short distances
behave perturbatively providing the information on the strong coupling constant, while those at
long distances are saturated by the ground state reflecting the individual mass spectrum and decay
constant. In the middle distances between perturbative and non-perturbative regimes, on the other
hand, perturbative approaches and low-energy effective theories are no longer suitable to analyze
correlators.

Lattice calculation is useful to calculate current correlators at any distances. So far, lattice
calculation of current correlators has been aimed mainly at long distances to extract hadron masses
and decay constants and shown the agreement with experiments. This agreement supports the
consistency between experiments and QCD at low energies, where contributions of excited states
are missing and only a part of QCD can be seen. Comparison of lattice correlators at short and
middle distances with experimental observables may provide a test of the consistency between
experiments and QCD at higher energies corresponding to the excited states.

The vector and axial-vector current correlators are useful for such analysis because they can be
compared to the experimental observable in hadronic τ decays through the dispersion relation. The
early ALEPH data [1, 2] of the τ decay experiment were converted to the vector and axial-vector
correlators [3] and the result was used to test the consistency with a quenched lattice calculation at
a single lattice spacing [4].

With unquenched lattice simulations and updated ALEPH data [5], we perform a more re-
alistic calculation. Numerical simulations are carried out using 2+ 1-flavor Möbius domain-wall
fermions on 323 ×64, 483 ×96 and 643 ×128 lattices at the lattice spacings a = 0.080,0.055 and
0.044 fm, respectively. Pion masses on our ensembles are 500, 400, 300 and 230 MeV. We show
the extrapolation to the physical pion mass and continuum limits agrees with the ALEPH data.

This analysis is done as a part of our studies on current correlators at short and middle distances
to investigate what kinds of information of QCD we can extract from them. In these studies, we
have determined renormalization factors of quark currents [6] and the chiral condensate [7].

2. Current correlators

We calculate the vector and axial-vector current correlators

ΠV (x) = ∑
µ
⟨Vµ(x)Vµ(0)†⟩, ΠA(x) = ∑

µ
⟨Aµ(x)Aµ(0)†⟩−Π(0)

A (x), (2.1)

where the vector and axial-vector currents V (x) and A(x) are iso-triplet. Since the spectral func-
tions obtained through hadronic τ decays are related to the spin-1 contribution of the correla-
tors, we subtract from the axial-vector channel the spin-0 part estimated as the contribution of the
ground state pion Π(0)

A (x)≃ z0M2
πK1(Mπ |x|)/2π2|x|, where K1 stands for the modified Bessel func-

tion and z0 and Mπ are extracted from the zero-momentum correlator of the axial-vector current,∫
d3x⟨A4(x)A4(0)†⟩ → z0e−Mπ x4 . The vector channel does not need any modification due to the

absence of the spin-zero part in the isospin limit. We subtract the discretization effect at the mean
field level. The detail is explained in [6].
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Figure 1: RV+A calculated on the ensembles at a = 0.055 fm and the three pion masses Mπ ≃ 300 MeV
(diamonds), 400 MeV (squares) and 500 MeV (circles). The prediction of massless perturbation theory
(dashed curve) and the result from the experiment (band) are also shown.

These correlators are related to the experimentally measured spectral functions ρV/A(s) through
the dispersion relation [3]

ΠV/A(x) =
3

8π4

∫ ∞

0
ds s3/2ρV/A(s)

K1(
√

s|x|)
|x|

. (2.2)

The hadronic τ decay experiment provides the spectral functions ρV/A(s) at invariant masses smaller
than the τ lepton mass, s < m2

τ . We use the latest ALEPH data ρV/A(s) of the τ decay experiment
[5] in this region. In the region s > m2

τ , we calculate ρV/A(s) using perturbation theory available to
order α4

s [8] and a model [9] to take account of the violation of the quark-hadron duality [10, 11].

3. Lattice vs Experiment

We compare correlators on the lattice with those obtained from the experimental data for
the sum and difference RV±A(x) = (ΠV (x)±ΠA(x))/2Π0(x) normalized by the vector correlator
in massless free theory Π0(x). The V +A channel contains the perturbative contribution, which
dominates at short distances. The V −A channel consists only of the effects of the spontaneous
chiral symmetry breaking.

First, we focus on the V +A channel. Figure 1 shows the results of RV+A(x) calculated on
the ensembles at a = 0.055 fm and three different pion masses. The results at smaller masses are
closer to the experimental result (band), implying that the chiral extrapolation to the physical pion
mass makes them close to the experimental data. Figure 2 shows the result at matched pion mass
Mπ ≃ 300 MeV and at different lattice spacings. There is a significant dependence on the lattice
spacing, which can be controlled by a term ∝ a2 at middle and long distances.

We extrapolate these lattice results to the physical point, i.e. the continuum limit a → 0 and
physical pion mass limit Mπ → mπ ≃ 140 MeV as follows. We divide the range of |x| into N bins,

Bi = [xi −δx,xi +δx], xi+1 = xi +2δx, i = 1,2, . . . ,N, (3.1)
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Figure 2: Same as Fig. 1 but calculated on the ensembles at matched pion mass Mπ ≃ 300 MeV and different
lattice spacings a = 0.080 fm (diamonds), 0.055 fm (squares) and 0.044 fm (circles).
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Figure 3: Extrapolation of RV+A to the physical point.

where xi and δx are the center of the ith bin and one half of the width of bins, respectively. For
each bin, we define RV+A(a,Mπ ,xi) as an average of RV+A(x) over the lattice points falling in Bi.
We then perform a global fit for all ensembles using the fit function

RV+A(a,Mπ ;xi) = RV+A(0,mπ ,xi)+ cm,i(M2
π −m2

π)+ ca,ia2, (3.2)

with three free parameters RV+A(0,mπ ,xi),cm,i and ca,i for each i. The first parameter RV+A(0,mπ ,

xi) corresponds to the extrapolated value. The other parameters cm,i and ca,i are to control the
dependences on the pion mass and the lattice spacing, respectively. Figure 3 shows the result of the
extrapolation. Here, we take δx = 0.01 fm for xi ≥ 0.4 fm and δx = 0.02 fm for xi < 0.4 fm. After
such an extrapolation, the lattice results are consistent with the experimental data at |x| ∼ 0.3 fm
and longer. At even shorter distances, we find deviations from the perturbative and experimental
results, which suggest that the discretization effects beyond O(a2) are significant. In fact, the
coefficient ca,i rapidly increases toward the short-distance region.
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Figure 4: RV−A calculated on the same ensembles as in Fig. 1, plotted with the experimental result (band).
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Figure 5: Same as Fig. 4 but calculated on the same ensembles as in Fig. 2.

Next, we show the lattice results for the V −A channel. Figure 4 shows the lattice data for
RV−A(x) at a = 0.055 fm and three different pion masses. RV−A(x) vanishes in the short-distance
limit as it should be. Actually it is guaranteed by the good chiral symmetry of Möbius domain-wall
fermions. At short distances (|x|≲ 0.5 fm), the dependence on the pion mass is clearly seen and the
results at smaller masses are closer to the experimental result. In Fig. 5, which shows the data at the
matched pion mass Mπ ≃ 300 MeV and three different lattice spacings, no significant dependence
on the lattice spacing is seen at least at short distances unlike the case of the V +A channel. One
possible reason for this is that the most of discretization effect on correlators at short distances is
perturbative and cancelled for the V −A channel. Figure 6 shows the result of the extrapolation to
the physical point, which is done in the same manner as for the V +A channel. A good agreement
with the ALEPH data is found.

We also investigate the region of |x| where perturbative approaches give reliable predictions.
Figure 6 also shows a rough prediction of the Operator Product Expansion (OPE) [12] truncated
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Figure 6: Extrapolation of RV−A to the physical point. The experimental result (band) and the predictions
of OPE including up to four- (dotted curve) and six-dimensional (dashed curve) operators are also plotted.
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Figure 7: Decomposition of the vector correlators into the contributions of the spectral functions in several
regions of s. The area indicated by “Perturbation” represents the contribution of the spectral function in
s > 2.7 GeV2, which is calculated perturbatively. The region s ≤ 2.7 GeV2 is splitted into the ρ meson
resonance (0.776−0.150)2 GeV2 < s < (0.776+0.150)2 GeV2 and above and below.

at dimension-four (dotted curve) and dimension-six (dashed curve) operators. The OPE trun-
cated at the dimension-four underestimates the lattice data already at 0.3 fm. The OPE including
dimension-six operators also disagrees with the lattice result in |x| > 0.3 fm. It indicates that the
OPE of RV−A(x) is useful in the limited region |x|< 0.3 fm. Figure 7 shows the decomposition of
RV (x) = ΠV (x)/Π0(x) from the experiment into the contributions of the spectral function in sev-
eral divided regions of s. Since the non-perturbative contribution is substantial or even dominant
at |x| ≳ 0.5 fm, the correlator calculated perturbatively in such a region may not be precise. The
axial-vector channel also has a similar decomposition.
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4. Summary

We calculate the vector and axial-vector current correlators in the short- and middle-distance
regions. We show that the lattice results agree with the ALPEH data of hadronic τ decays in
|x|> 0.3 fm for the V +A channel and |x|> 0.2 fm for the V −A channel.

We also investigate the region where perturbative approaches are useful to describe the cor-
relators. The OPE of the V − A channel disagrees with the lattice result in |x| ≳ 0.3 fm. The
individual channels of the correlators in |x| ≳ 0.5 fm are not dominated by the contributions from
the perturbative regime.

Numerical simulations are performed on Hitachi SR 16000 and IBM System Blue Gene Solu-
tion at KEK under a support of its Large Scale Simulation Program (No. 15/16-09, 16/17-14). We
thank P. Boyle for the optimized code for BGQ. This work is supported in part by the Grant-in-
Aid of the Japanese Ministry of Education (No. 25800147, 26247043, 26400259) and the Post-K
supercomputer project through JICFuS.

References

[1] R. Barate et al. [ALEPH Collaboration], Z. Phys. C 76, 15 (1997). doi:10.1007/s002880050523

[2] R. Barate et al. [ALEPH Collaboration], Eur. Phys. J. C 4, 409 (1998). doi:10.1007/s100520050217

[3] T. Schäfer and E. V. Shuryak, Phys. Rev. Lett. 86, 3973 (2001) doi:10.1103/PhysRevLett.86.3973
[hep-ph/0010116].

[4] T. A. DeGrand, Phys. Rev. D 64, 094508 (2001) doi:10.1103/PhysRevD.64.094508
[hep-lat/0106001].

[5] M. Davier, A. Höcker, B. Malaescu, C. Z. Yuan and Z. Zhang, Eur. Phys. J. C 74, no. 3, 2803 (2014)
doi:10.1140/epjc/s10052-014-2803-9 [arXiv:1312.1501 [hep-ex]].

[6] M. Tomii et al. [JLQCD Collaboration], Phys. Rev. D 94, no. 5, 054504 (2016)
doi:10.1103/PhysRevD.94.054504 [arXiv:1604.08702 [hep-lat]].

[7] M. Tomii et al. [JLQCD Collaboration], arXiv:1511.09170 [hep-lat].

[8] P. A. Baikov, K. G. Chetyrkin and J. H. Kuhn, Phys. Rev. Lett. 101, 012002 (2008)
doi:10.1103/PhysRevLett.101.012002 [arXiv:0801.1821 [hep-ph]].

[9] O. Cata, M. Golterman and S. Peris, Phys. Rev. D 77, 093006 (2008)
doi:10.1103/PhysRevD.77.093006 [arXiv:0803.0246 [hep-ph]].

[10] M. A. Shifman, In Minneapolis 1994, Continuous advances in QCD* 249-286 [hep-ph/9405246].

[11] B. Blok, M. A. Shifman and D. X. Zhang, Phys. Rev. D 57, 2691 (1998) Erratum: [Phys. Rev. D 59,
019901 (1999)] doi:10.1103/PhysRevD.57.2691, 10.1103/PhysRevD.59.019901 [hep-ph/9709333].

[12] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B 147, 385 (1979).
doi:10.1016/0550-3213(79)90022-1

6


