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1. Motivations

Testing the consistency and the correctness of the Standard Model is a central goal of particle
physics. The decays of the B-mesons and B-baryons can be used to improve the determination of
several poorly known matrix elements of the Cabibo-Kobayashi-Maskawa (CKM) quark mixing
matrix, and in particular |Vub|. The mean values of this fundamental parameter of the Standard
Model extracted from inclusive decays agree with those extracted from the different exclusive
decays (such as B→ π`ν and B→ τν) only when the quoted uncertainties are stretched by a factor
three [1]. It needs to be resolved whether this arises due to systematic uncertainties inherent in
different treatments, or due to beyond Standard Model (BSM) physics.

We report on the determination of the form factors in the Bs → K`ν decay in N f = 2 QCD,
and the heavy quark effective theory (HQET) to account for the heavy quark on the lattice [2].
The formalism will be outlined here, especially the non-perturbative renormalization procedure
and continuum limit extrapolation. The invariant mass of the leptons is kept fixed as the continuum
limit is taken. The differential decay rates at a given q2 is related to the renormalized form factors
(at the same q2) and |Vub|. A precise experimental determination of this differential decay rate
would then allow for a reliable and accurate determination of |Vub|, when all the errors have been
systematically accounted for. In our theoretical calculation we identify all the possible systematic
sources of error, providing a robust estimate of the exclusive observable. The complementary
proceeding [3] describes the details involved in the extraction of the bare form factors on the lattice.

On the lattice, the most challenging aspect for this reliable computation is the heavy quark
itself [4]. Due it’s mass mb ∼ 5GeV being comparable to that of inverse lattice spacing of the
finest lattice ensembles in use today, the discretization effects due to the heavy quark are particu-
larly severe. A theoretically clean way to avoid this problem is the use of an effective theory for the
heavy quark. However, the state-of-art computations [5, 6, 7, 8] use either a relativistic heavy quark
action or a non-relativistic formulation of QCD on the lattice, which are affected by perturbative
renormalization or uncontrolled discretion effects. A fully non-perturbative programme to renor-
malize the currents does not yet exist. Conventional discretization errors are estimated only by
power-counting methods, while the actual extrapolation to the continuum limit with heavy quarks
may involve a complicated dependence on the lattice spacing. Our computation seeks to address
these issues and demonstrate a clean extrapolation to the continuum limit of the form factors.

2. Methodology

To make contact with phenomenology, we list the following "five-point" program:

(i) reliable computation of ground state matrix elements 〈K|V µ(0)|Bs〉,
(ii) renormalization of the matrix elements, either in full QCD, or if an effective theory is being

used, then in the effective theory, which is then matched to QCD,

(iii) extrapolation of the renormalized quantity at finite lattice spacings to the continuum limit,

(iv) extrapolation of the (light) quark masses to their physical values,

(v) mapping out the q2 dependence of the form factors, since experiments measure values of the
differential cross-section.
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We employ lattice discretized HQET to compute the form factors on the lattice. While the first
challenge is the subject of [3], this proceeding is concerned with the second and third items. Work
on the fourth point is in progress. At the moment, our computation focuses on a fixed value of q2.

3. HQET on the lattice and non-perturbative renormalization

A Bs state with a momentum pBs decays into a Kaon K with momentum pK mediated by
the vector current, V µ(x) = ψ̄u(x)γµψb(x). In QCD, we parameterize the matrix element into two
equivalent form-factor decompositions:

〈K(pK)|V µ(0)|Bs(pBs)〉 =

(
pBs + pK−

m2
Bs
−m2

K

q2 q

)µ

· f+(q2)+
m2

Bs
−m2

K

q2 qµ · f0(q2)

=
√

2mBs

[
vµ ·h‖(pK · v)+ pµ

⊥ ·h⊥(pK · v)
]

(3.1)

The last line can be seen as a definition of the form factors h‖ and h⊥ which we compute. The veloc-
ity, momentum and squared momentum transfer (q2) variables are related as: vµ = pµ

Bs
/mBs , pµ

⊥ =

pµ

K− (v · pK)vµ , qµ = pµ

Bs
− pµ

K, pK · v =
m2

Bs+m2
K−q2

2mBs
. Using non-relativistic state normalization in

HQET removes the mass dependence present in the relativistic normalization: 〈Bs(p′)|Bs(p)〉 =
2E(p)(2π)3δ (p−p′). Consequently, h⊥,h‖ are independent of the heavy quark mass, modulo a
logarithmic dependence coming from the matching function between QCD and HQET. Note that
in the latter, the effective heavy quark fields are mass independent, and hence no additional depen-
dence originates from the vector current.

The lattice computation is performed in the rest frame of the Bs meson: vµ = (1,0,0,0), where
the QCD matrix elements are simply related to the form factors via:

(2mBs)
−1/2〈K(pK)|V 0(0)|Bs(pBs)〉 = h‖(EK) (3.2)

(2mBs)
−1/2〈K(pK)|V k(0)|Bs(pBs)〉 = pk

Kh⊥(EK) (3.3)

The only kinematic variable is EK = pK · v, the energy of the final state Kaon. Neglecting terms of
O(m2

`/m2
Bs
,m2

`/q2), the differential decay rate can be directly related to the form factor:

dΓ(Bs→ K`ν)

dq2 =
G2

F
24π3 |Vub|2 |pK |3[ f+(q2)]2 (3.4)

With the experimental measurement of the differential decay rate and a reliable estimate of f+(q2),
|Vub| can be accurately measured. We now discuss the renormalized form factors hstat,RGI

‖,⊥ , related
to the QCD form factors h‖,⊥ via the matching function(s):

h‖,⊥(EK) = CV0,Vk(Mb/ΛMS)h
stat,RGI
‖,⊥ (EK) · [1+O(1/mb)] (3.5)

Our computations use the N f = 2 QCD ensembles. A parallel project is non-perturbatively
matching the currents V0,k between QCD and HQET, and will allow for the 1/m corrections to
be computed [12]. For now, we remain with the static order, where most of the non-perturbative
results are available. The bare currents V stat

0,k are:

Vstat
0 = ψ̄uγ0ψh +acV0(g0)ψ̄u ∑

l

←−
∇

S
γlψh; Vstat

k = ψ̄uγkψh−acVk(g0)ψ̄u ∑
l

←−
∇

S
γlγkψh. (3.6)
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The leading term is the same as in QCD, except that the heavy quark fields are denoted by ψ̄h,
and the HYP1 and HYP2 heavy quark actions are considered [9], which have an exponentially
better signal-to-noise ratio as compared to the classic Eichten-Hill action for the heavy quarks. In
addition, there is the O(a) improvement term, whose coefficients are currently known to 1-loop
order: cx = c(1)x g2

0 +O(g4
0). They are relatively small [10]: for HYP1, cV0 = 0.0223(6), cVk =

0.0029(2) while for HYP2, cV0 = 0.0518(2), cVk = 0.0380(6).
In HQET, the currents get renormalized multiplicatively. At the static order, the spin symmetry

of HQET results in the same renormalization of the vector current as the axial current: Zstat,RGI
Vk

=

Zstat,RGI
A0

, but an extra factor Zstat
V/A(g0) for V0, as Wilson fermions break chiral symmetry:

Vstat,RGI
0 = Zstat,RGI

A0
(g0)Zstat

V/A(g0)Vstat
0 ; Vstat,RGI

k = Zstat,RGI
A0

(g0)Vstat
k . (3.7)

The crucial aspect of our non-perturbative renormalization setup proceeds via the calculation of the
RGI (renormalization group invariant) quantities ΦRGI, which are both scheme and scale indepen-
dent. For a renormalized static heavy-light current, the the differential equation for the physical
quantity at different scales µ , can be integrated in perturbation theory:

(ARGI)0 = lim
µ→∞

[2b0ḡ2(µ)]−γ0/2b0(Astat
R )0(µ) (3.8)

The integration constant in the left hand side is completely independent of scale of the running
coupling ḡ2(µ), the renormalized current and the scheme used to compute them. γ0 and b0 are
the universal 1-loop coefficients of the running mass and the couplings. The goal therefore is to
determine the integration constant. The non-perturbative analog is expressed as:

Zstat
A,RGI(g0) =

ΦRGI

Φ(µ)
× Zstat

A (g0,aµ)
∣∣
µ= 1

2Lmax
. (3.9)

The first universal factor relates the renormalization of Astat
0 at a scale µ0 = 1/Lmax calculated in

a scheme to the RGI operator, while the second factor knows about the lattice discretization. The
computation of both factors was done in [11], where the Schrödinger functional scheme was used
to compute the RGI quantity, and yielded ΦRGI/Φ(µ) = 0.880(7). Finally, for our computation,
we used a a generous range [Zstat

V/A(g0)]
−1 = 0.97(3), motivated by comparing the value for the

quenched approximation, noting the absence of N f dependence at the 1-loop order. This uncertainly
only affects the 1/mh terms, and will be eliminated in the non-perturbative matching program [12].

4. Matching to QCD

The renormalized form factors need to be matched to that of QCD via the conversion functions
Cx. These can be obtained by calculating a matrix element upto a given order in both theories and
then matching the expressions. As a pedagogical example, consider the matrix element M of the
renormalized axial current in both 1-loop QCD and HQET in the leading order (stat). To make the
theories agree, we match the expressions [4] obtained for QCD, with that of HQET:

MQCD(L,mh) = [1+g2(−γ0 ln(mhL)+BQCD)]M
(0)+O(g4)+O(

1
mhL

), (4.1)

Mstat(µL) = [1+g2(−γ0 ln(µL)+Blat)]M
(0)+O(g4). (4.2)

Expressed in terms of the running coupling g2, and renormalized mass, equating the leading order
gives the multiplicative matching function between the two theories: Cmatch = 1+g2γ0 ln(µ/mh)+

(BQCD−Blat)+O(g4), motivating the the logarithmic dependence on the heavy quark mass.
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A non-perturbative matching of the currents is underway by the ALPHA collaboration [12].
Meanwhile, for our purposes, we use the best available perturbative results. A major advantage in
our procedure of using the RGI operators is that we can directly use the results from renormalized
continuum perturbation theory [13], as opposed to other results in the literature which use bare
perturbation theory. The limitation here is on the knowledge of the running quark mass, which
have uncertainties of O(α3

s ), and translates to the same level of uncertainties on our estimate of the
total Zx =Cx×Zstat,RGI

x [4]. This is already better by one more order in αs than the other approaches
used in the literature which have uncertainties of at least O(α2

s ).

5. The continuum limit

We now outline our results for the continuum limits of the form factors. Computations of the
bare form factors are repeated for different lattice ensembles with decreasing lattice spacings. For
this, the N f = 2 ensembles by the Coordinated Lattice Simulations (CLS) effort [14] were used.
The chosen ensembles (with labels A5, F6 and N6) all have roughly the same pion mass (330, 310,
340 MeV respectively), and the lattice spacing decreases like 0.0749(8), 0.0652(6) and 0.0483(4)
fm respectively. The spatial dimension of the lattices satisfy mπL > 4 and an aspect ratio of 2. The
ensembles have degenerate light quarks. The strange quark mass is fixed by fixing the Kaon mass
in units of the Kaon decay constant to it’s physical value at our light quark masses.
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Figure 1: The linear extrapolation in a2 to the continuum limit of the 1-loop O(a) improved RGI form
factors hstat,RGI

‖ (left) and hstat,RGI
⊥ (right). The different discretizations HYP1/2 are shifted to ensure visibility.

Since the computations keep the physical momentum pK = 0.535 GeV fixed, flavor twisted
boundary conditions are necessary to impart the same (three-) momentum to the Kaon as the lattice
spacing varies: ψs(x+L1̂) = eiθ ψs(x). The aforementioned Kaon momentum is obtained with a
lattice momentum of (1,0,0) on the finest lattice (N6). On the F6 and A5, therefore, we choose
flavor twisted boundary conditions, such that, pK = (1,0,0)(2π + θ)/L. The F6 gets a larger
(θ/(2π) = 0.350) twist as compared to A5 (θ/(2π) = 0.034) due to the respective lattice size. The
Bs meson is always kept at rest. For our value of pK, the momentum transferred is q2 = 21.22 GeV2

on all lattices, with an error of 0.03−0.05 GeV2 due to the lattice spacing.
While the extraction of the bare form factors is explained in [3], we show how the continuum

limit can be extracted with the RGI form factors. In the error analysis, the statistical correlations
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and autocorrelations are all taken into account [15, 16]. The results of the continuum extrapolation
is shown in Fig 1. A list of the values can be found in [2]. The continuum limit is obtained with an
extrapolation linear in a2, with the cx = c(1)x g2

0. While the h‖ gives a compatible estimate by fitting
it to a constant (and naturally with smaller error bars), we keep the a2 extrapolations because there
is no reason why these should disappear. Also, the O(a) corrections from perturbation theory do
not matter at the precision of our data. This gives us: hstat,RGI

‖ = 0.976(41)GeV1/2 and hstat,RGI
⊥ =

0.876(43)GeV−1/2.
We can now estimate the form factor f+ using different systematics for 1/mh suppressed terms.

Two such estimates are f+,1 and f+,2. In the first one, all the known terms and kinematic factors
are controlled, expect in hstat,RGI

⊥,‖ (which have suppressed uncontrolled 1/mh contributions), while
in the second one f+,2 all the 1/mh terms are systematically dropped:

f+,1 =

√
mBs

2

(
(1− EK

mBs

)CVkhstat,RGI
⊥ (EK)+

1
mBs

CV0hstat,RGI
‖ (EK)

)
(5.1)

f+,2 =

√
mBs

2
CVkhstat,RGI

⊥ (EK). (5.2)

Numerically, the values are: f+,1 = 1.77(7)(7) and f+,2 = 1.63(8)(6). Comparing these esti-
mates, we see that the O(1/mh) terms contribute like (1− EK

mBs
), and we have a systematic ∼ 15%

ambiguity/uncertainty due to the dropping of these terms. Thus we have a preliminary estimate:
f+(21.22GeV2) = f+,2±0.15 f+,2 = 1.63(8)(6)±0.24. The second error bars are the O(α3

s ) per-
turbative uncertainties in the matching functions. We note that this systematic error is expected to
drop to ∼ 1−2% when all the 1/mh will be systematically included.

The quantity f0 is also often quoted in the literature, which is defined as:

f0 =

√
2/mBs

1−m2
K/m2

Bs

(
(1− EK

mBs

)CV0hstat,RGI
‖ (EK)+

p2
K

mBs

CVkhstat,RGI
⊥ (EK)

)
(5.3)

For this number, we estimate f0 = 0.663(3)(1). The results for f+,0 agree well with those existing
in the literature: For Flynn et al. [6], the form factors extracted at our values of q2 are f+' 1.65(10)
and f0 ' 0.62(5), while Bouchard et al. [7] report f+ ' 1.80(20) and f0 ' 0.66(5). Given that our
calculation has a very different source of systematic uncertainty, this agreement is very necessary
for phenomenological applications.

6. Conclusion and Outlook

We report the first study of the continuum limit of non-perturbatively renormalized form fac-
tors. Since the stress is on the continuum limit we have kept the momentum transfer fixed at
q2 = 21.22GeV2. In the static limit, we have precise non-perturbative determinations of the RGI
form factors. The matching to QCD is perturbative, and only has uncertainties of order O(α3

s ). The
discretization effects are not very large, allowing a smooth linear a2 extrapolation to the continuum.
On the other hand 1/mh effects need to incorporated.

The agreement of the various methods in the extraction of the form factors increase our con-
fidence in their extraction using lattice techniques. Once the 1/mh are included they will be of
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direct phenomenological interest. This is envisaged as a direct follow-up of the project. Prelim-
inary investigations are already in progress. For connection to phenomenology, the extrapolation
to the physical light quarks will also be considered, as well as the computation at another value
of the momentum. The basic results for the continuum extrapolation presented here inspire the
confidence that precise lattice results, can be used together with experimental measurements for a
reliable extraction of Vub in the near future.
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