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1. Introduction

Precision measurements of B and Bs meson decays at the Large Hadron Collider are an im-
portant tool in the search for new physics. For example, the first observation of the rare decay
Bs → µ+µ−, through a combined analysis by the LHCb and CMS collaborations [1], tested the
Standard Model prediction of the branching fraction. In the Standard Model this decay is doubly-
suppressed, but the branching fraction may receive large contributions from new physics effects.
Currently, the measured branching fraction is consistent with Standard Model expectations, but
there is still room for new physics, given the experimental and theoretical uncertainties. Run II
at the LHC should significantly reduce experimental uncertainties for a wide range of B(s) decays.
Tightening constraints on potential new physics therefore requires a similar improvement in the
theoretical determination of the Standard Model expectations.

The Bs meson branching fraction B(Bs → µ+µ−) can be expressed in terms of the ratio of
fragmentation fractions, fd/ fs. The fragmentation fraction fq gives the probability that a b-quark
hadronizes into a Bq meson. Reducing sources of systematic uncertainties in the value of this ratio
will improve not just the precision of the determination of the Bs→ µ+µ− branching fraction, but
a range of other Bs meson decay branching fractions at the LHC as well [2].

The ratio of the fragmentation fractions, fd/ fs, can be extracted from the ratio of the scalar
form factors of the B→ Dlν and Bs→ Dslν semileptonic decays [3]. There is currently only one
lattice determination of the form factor ratio, using heavy clover bottom and charm quarks [4].
The form factors, f+(q2) and f0(q2), for the semileptonic decay Bs→ Ds`ν were determined with
twisted mass fermions for the region near zero recoil in [5].

In addition to determining the fragmentation ratio relevant to the measurement of the branch-
ing fraction for the rare decay, Bs → µ+µ−, the semileptonic Bs → Ds`ν decay provides a new
method to determine the CKM matrix element |Vcb|. There is a long-standing tension between
determinations of |Vcb| from exclusive and inclusive measurements of the semileptonic B meson
decays (see, for example, [6]), although recent analyses suggest the tension has eased [7]. Future
experimental observation of the Bs → Ds`ν decay, combined with lattice predictions of the form
factors, may shed light on the Vcb puzzle.

We report on the HPQCD collaboration’s calculations of the form factors, f+(q2) and f0(q2),
for the semileptonic decays B(s)→ D(s)`ν , using the non-relativistic (NRQCD) action for the bot-
tom quarks and the Highly Improved Staggered Quark (HISQ) action for the charm quarks. Our
results for the B→D`ν decay appeared first in [8]. We refer the reader to Sections II and III of [8]
for further details of the analysis.

2. Ensemble details

We use five gauge ensembles, summarized in Table 1, generated by the MILC collaboration
[9]. These ensembles include three “coarse” (with lattice spacing a≈ 0.12fm) and two “fine” (with
a≈ 0.09fm) ensembles, incorporating n f = 2+1 flavors of AsqTad sea quarks.

We study B(s) → D(s) semileptonic decays by evaluating the matrix element of the bottom-
charm vector current, V µ , between B(s) and D(s) states. We express these matrix elements in terms
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Table 1: Simulation details on three “coarse” and two “fine” n f = 2+1 MILC ensembles.
Set r1/a ml/ms (sea) Nconf Ntsrc L3×Nt amb ams amc aEsim

bb

C1 2.647 0.005/0.050 2096 4 243×64 2.650 0.0489 0.6207 0.28356(15)
C2 2.618 0.010/0.050 2256 2 203×64 2.688 0.0492 0.6300 0.28323(18)
C3 2.644 0.020/0.050 1200 2 203×64 2.650 0.0491 0.6235 0.27897(20)
F1 3.699 0.0062/0.031 1896 4 283×96 1.832 0.0337 0.4130 0.25653(14)
F2 3.712 0.0124/0.031 1200 4 283×96 1.826 0.0336 0.4120 0.25558(28)

of the form factors f (s)+ (q2) and f (s)0 (q2) as

〈D(s)(pD(s))|V
µ |B(s)(pB(s))〉= f (s)0 (q2)

M2
B(s)
−M2

D(s)

q2 qµ + f (s)+ (q2)

[
pµ

B(s)
+ pµ

D(s)
−

M2
B(s)
−M2

D(s)

q2 qµ

]
,

(2.1)
where the momentum transfer is qµ = pµ

B(s)
− pµ

D(s)
. In practice it is simpler to work with the form

factors f (s)‖ and f (s)⊥ , which are related to f (s)+ (q2) and f (s)0 (q2) via

f (s)+ (q2) =
1√

2MB(s)

[
f (s)‖ (q2)+(MB(s)−ED(s)) f (s)⊥ (q2)

]
, (2.2)

f (s)0 (q2) =

√
2MB(s)

M2
B(s)
−M2

D(s)

[
(MB(s)−ED(s)) f (s)‖ (q2)+(E2

D(s)
−M2

D(s)
) f (s)⊥ (q2)

]
. (2.3)

Here ED(s) is the energy of the daughter D(s) meson in the rest frame of the B(s) meson.

We calculate B(s) and D(s) meson two-point correlators and three-point correlators of the
bottom-charm currents, Jµ . We use smeared heavy-light or heavy-strange bilinears to represent the
B(s) meson, with either delta-function or Gaussian smearing. Three-point correlators are computed
as follows: The B(s) meson is created at time t0; a current Jµ inserted at timeslice t; and the D(s) me-
son annihilated at timeslice t0+T , where t0 < t < t0+T . We use four values of T and generate data
for four values of the D(s) meson momenta, ~pD(s) ∈ 2π/(aL){(0,0,0),(1,0,0),(1,1,0),(1,1,1)},
where L is the spatial lattice extent. We work in the rest frame of the B(s) meson.

We match the NRQCD-HISQ currents, Jµ , at one loop in perturbation theory, that is, through
O(αs,ΛQCD/mb,αs/amb), where amb is the bare lattice mass [10]. We re-scale all currents by the
tree-level massive wave function renormalization for the HISQ charm quarks [8].

3. Correlator fits

We fit B(s) and D(s) meson two-point functions to a sum of decaying exponentials in Euclidean
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time, t,

Cβ ,α
B(s)

(t) =
NB(s)

−1

∑
i=0

bβ

i bα∗
i e−E

B(s),sim

i t +

N′B(s)−1

∑
i=0

b′βi b′α∗i (−1)te−E
′B(s),sim

i t , (3.1)

CD(s)(t;~p) =
ND(s)

−1

∑
i=0
|di|2

[
e−E

D(s)
i t + e−E

D(s)
i (Nt−t)

]
+

N′D(s)
−1

∑
i=0
|d′i |2(−1)t

[
e−E

′D(s)
i t + e−E

′D(s)
i (Nt−t)

]
(3.2)

The superscripts α and β indicate the two forms of smearing for the B(s) meson source (delta
function or Gaussian). The amplitudes associated with the ordinary and oscillatory states are bi and
b′i, with associated meson energies E

B(s),sim
i and E

′B(s),sim
i , and di and d′i , where the corresponding

meson energies are E
D(s)
i and E

′D(s)
i , respectively. The ground state B(s) energy in NRQCD, E

B(s),sim
0 ,

is not equal to the true energy in full QCD, E
B(s)
0 , because the b-quark rest mass has been integrated

out in NRQCD. Here Mexp
bb is the spin-averaged ϒ mass used to tune the b-quark mass and aEsim

bb
was determined in [11]. For both B(s) and D(s) two-point functions, N is the number of exponentials
included in the fit.

For the three-point correlator, we use an ansatz that incorporates four terms, each of which
is a sum of exponentials, similar to the two-point forms shown above. For the full form, see [8].
We then determine the hadronic matrix element between B(s) and D(s), in the rest frame of the B(s)

meson, from

〈D(s)(p)|V µ |B(s)〉=
Aα

00
d0bα∗

0

√
2a3E

D(s)
0

√
2a3MB(s) . (3.3)

We fit these correlators using Bayesian multi-exponential fitting python packages lsqfit
and corrfitter [12], an approach that has been used by the HPQCD collaboration for a wide
range of lattice calculations.

We tested a number of indicators of fit stability, consistency, and goodness-of-fit to check
the fit results. For example, we checked that, beyond a minimum number of exponentials, the fit
results are independent of the number of exponentials included in the fit. We tested three types
of fits: simultaneous fits to correlator data for all four spatial momenta; chained fits (discussed in
detail in the appendices of [13]) to correlator data for all four spatial momenta simultaneously; and
“individual” fits, including the correlator data for just a single daughter meson momentum in each
fit. All three fit approaches give consistent results.

The simultaneous fits, with or without chaining, have the advantage that they capture the cor-
relations between momenta, which is then reflected in the uncertainty quoted in the fit results. The
chained fits give slightly better values of reduced χ2 and are about ten percent faster than the simul-
taneous fits, which is an important consideration for the large three-point fits. We take the result for
Nexp = 5 from the chained fit as our final result for each momentum. Choosing to use chained fits
for both two- and three-point fits ensures a consistent approach throughout the fitting procedure.

For each ensemble, we determined the ratio (M2
D(s)

+~p2)/E2
D(s)

and illustrate some results in

Figure 1. The shaded region corresponds to 1±αs(ap/π)2, where we set αs = 0.25. In contrast to
the B→ D`ν case, the data for the Bs→ Ds`ν decay lie systematically above the relativistic value
of unity, indicating that the statistical uncertainties of the fit results are sufficiently small that we
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Table 2: Preliminary results for the form factors, f (s)0 (~p) and f (s)+ (~p). For the B→ D`ν decay, the results
are taken from [8]. From top to bottom, the rows correspond to ensemble sets C1, C2, C3, F1, and F2.

f0(0,0,0) f0(1,0,0) f0(1,1,0) f0(1,1,1) f+(1,0,0) f+(1,1,0) f+(1,1,1)

0.8810(56) 0.8743(43) 0.8608(38) 0.8534(42) 1.135(12) 1.1125(57) 1.0837(61)
0.8809(31) 0.8716(54) 0.8617(44) 0.8503(50) 1.110(12) 1.0809(70) 1.0479(64)
0.8872(23) 0.8685(32) 0.8592(29) 0.8473(38) 1.1282(71) 1.0937(40) 1.0569(50)
0.9034(31) 0.8771(42) 0.8643(41) 0.8479(56) 1.1344(91) 1.0931(59) 1.0480(74)
0.9051(23) 0.8895(36) 0.8702(29) 0.8504(34) 1.1461(72) 1.0963(39) 1.0577(45)

f s
0(0,0,0) f s

0(1,0,0) f s
0(1,1,0) f s

0(1,1,1) f s
+(1,0,0) f s

+(1,1,0) f s
+(1,1,1)

0.8885(11) 0.8754(14) 0.8645(13) 0.8568(13) 1.1384(35) 1.1081(20) 1.0827(21)
0.8822(13) 0.8663(15) 0.8524(16) 0.8418(18) 1.1137(29) 1.0795(22) 1.0470(21)
0.8883(13) 0.8723(16) 0.8603(16) 0.8484(21) 1.1260(34) 1.0912(24) 1.0552(28)
0.9063(10) 0.8848(13) 0.8674(13) 0.8506(17) 1.1453(29) 1.0955(24) 1.0549(24)
0.9047(12) 0.8855(16) 0.8667(15) 0.8487(19) 1.1347(42) 1.0905(26) 1.0457(33)

can resolve discretization effects at O(αs(ap/π)2). In both cases, the discretization effects are less
than 0.5% in the dispersion relation.

Figure 1: Dispersion relation for the ensemble sets C2 and F1. For the Bs→ Ds`ν decay (right-hand pane),
we include all three types of fits listed in the text (simultaneous, chained, and individual) to illustrate the
consistency of our results. The shaded region corresponds to 1±αs(ap/π)2 where we take αs = 0.25. The
left-hand pane is taken from [8].

We summarize our preliminary results for the form factors, f (s)0 (~p) and f (s)+ (~p), for each en-
semble and D(s) momentum, in Table 2.

4. Chiral, continuum and kinematic extrapolations

We express the dependence of the form factors on the z-variable, z(q2)=

√
t+−q2−

√
t+−t0√

t+−q2+
√

t+−t0
, where
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t+ = (MB(s) +MD(s))
2 and we take t0 = q2

max, through a modification of the BCL parameterization
[14]

f (s)0 (q2(z)) =
1
P0

J−1

∑
j=0

a(0,(s))j (ml,msea
l ,a)z j, (4.1)

f (s)+ (q2(z)) =
1

P+

J−1

∑
j=0

a(+,(s))
j (ml,msea

l ,a)
[

z j− (−1) j−J j
J

zJ
]
. (4.2)

Here the P0,+ are Blaschke factors that take into account the effects of expected poles above the
physical region. The expansion coefficients a(0,+,(s))

j include lattice spacing and light quark mass
dependence. We modify this parameterization of the form factors to accommodate the systematic
uncertainty associated with the truncation of the matching procedure at O(αs,ΛQCD/mb,αs/(amb)).
We introduce fit parameters m‖ and m⊥, with central value zero and width δm‖,⊥ and re-scale the
form factors, f‖ and f⊥ according to f‖,⊥→ (1+m‖,⊥) f‖,⊥. We take the systematic uncertainties in
these fit parameters as 3% and refer the reader to the detailed discussion of this approach in [8].

In Figure 2 we plot our fit results for f (s)0 (z(q2)), f (s)+ (z(q2)) as a function of the momentum
transfer, q2, for B→ D`ν (left panel) and Bs → Ds`ν (right panel) semileptonic decays. We test
the convergence of our fit ansätze by modifying the fit function, as outlined in detail in [8]

Figure 2: Fit results as a function of the momentum transfer, q2, for the B→ D`ν (left) and Bs → Ds`ν

(right) semileptonic decays. The left-hand pane first appeared, in slightly modified form, in [8].

5. Summary

We have presented lattice calculations of the B(s) → D(s)`ν semileptonic decays and deter-

mined the form factors, f (s)0 (q2) and f (s)+ (q2) over the full kinematic range of momentum transfer.
There are currently a number of tensions between experimental measurements and theoretical ex-
pectations for semileptonic decays of the B meson. These tensions include the branching fraction
ratios, R(D(∗)), and determinations of |Vcb| from exclusive and inclusive decays. Future experi-
mental measurements of semileptonic decays of Bs mesons, in conjunction with our results for the
form factors, may provide some insight into these tensions.

The dominant uncertainties in the form factors for the B(s) → D(s)`ν decays arise from the
discretization effects, with a significant contribution from the matching to full QCD. Higher order
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calculations in lattice perturbation theory with the highly improved actions used in this calculation
are currently unfeasible, so we are exploring methods to reduce matching errors by combining
results calculated using NRQCD with those determined with an entirely relativistic formulation for
the b-quark [8, 13].

The LHC is scheduled to significantly improve the statistical uncertainties in experimental
measurements of B(s) decays with more data over the next decade. Reduced uncertainties on the
corresponding form factors will improve theory errors in the fragmentation function ratio, fs/ fd ,
used to extract branching fractions of Bs decays at the LHC, and in determinations of |Vcb|. These
improvements will be necessary to exploit fully the improved statistical precision of future experi-
mental results and ultimately shed light on current tensions in the heavy quark flavor sector.
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