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The rare kaon decay K+ → π+νν is highly suppressed in the standard model and thus provides an
ideal place to search for new physics beyond the standard model. These decays are the principal
objective of a new experiment, NA62 at CERN. Another new experiment to search for KL →
π0νν is now underway at J-PARC. Given the goal of 10% precision by NA62, it is important
to determine the long-distance contributions to the K+ → π+νν amplitude with a controlled
uncertainty. In this talk we will report the progress on the lattice QCD calculation of the long-
distance contributions to the K+ → π+νν decay amplitude, with an emphasis on the treatment of
the short-distance divergence in the bilocal operator product.
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The rare kaon decay K+ → π+νν is characterized at long distances as resulting from a flavor-
changing neutral current and cannot occur at first order in the standard model. Instead the standard
model prediction comes from the diagrams shown in Fig. 1 in which two heavy gauge bosons must
be exchanged leading to a suppression by four powers of their masses, MW and MZ .

The K+ → π+νν decay and its companion process KL → π0νν are actively studied as decays
that are particularly sensitive to new physics for two reasons. First as second-order weak processes
they are strongly suppressed in the standard model, increasing the possible visibility of new phe-
nomena. Second, they are short-distance dominated, allowing the standard model prediction to
be determined from the matrix element of a vector current (accurately known from experiment)
multiplied by a short-distance, perturbative Wilson coefficient.

Here we focus on the charged kaon decay K+ → π+νν . Of the two rare kaon decays with a
two-neutrino final state, the charged decay has the potentially largest long-distance effects which
best motivates a lattice QCD study. The NA62 experiment expects to measure the branching ratio
of this decay to 10% accuracy in the next few years making it important that potentially-uncertain,
non-perturbative, long-distance effects are understood to greater accuracy. This study [1] is part of
a larger effort which also includes the rare kaon decays into charged leptons [2, 3].

The standard model prediction for the branching ratio [4] for this decay can be written as:

Br = κ+(1+∆EM)

[(
Imλt

λ 4 X(xt)

)2

+

(
Reλc

λ
Pc +

Reλt

λ 5 X(xt)

)2
]
, (1)

where λq =V ∗
qsVqd for q = t, c can be written in terms of the CKM matrix elements while λ = |Vus|.
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Figure 1: The three types of diagrams contributing to K+ → π+νν in the standard model. We refer
to the left-most and center diagrams as WW - and Z-exchange. We will not explicitly discuss the
right-most diagram since this is dominated by short-distance phenomena at the scale of 1/MW and
lattice methods are not needed for its evaluation. As is conventional in a lattice QCD discussion,
the interactions of the quark propagators with QCD gluons are not shown.

The largest contribution to this charged kaon decay comes from short distances with the top
quark alone contributing about 50%. The other 50% comes for the top-charm interference and
(charm)2 pieces present in the second term in Eq. (1). However, even this relatively large charm
contribution also comes from short distances. This can be seen from the left-most diagram shown
in Fig. 1. At distances large compared to 1/MW , the two W propagators can be reduced to points
which results in a quadratically-divergent, quark loop containing two, four-fermion vertices. The
GIM cancellation between up and charm and the fact that this divergent behavior is cut off at the W
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scale imply a result ∝ (m2
c −m2

u) ln(M2
W/m2

c)/M4
W where mc and mu are the masses of the charm and

up quark. Since this log contribution necessarily comes from an energy scale larger than mc, the
short distance component of the charm contribution is enhanced by a factor of ln(M2

W/m2
c) ≈ 8.4

suggesting a long-distance contribution of 50%/8.4=6%. However, this may be an over estimate of
the short-distance effects because the contribution of the ln(M2

W/m2
c) piece is reduced by a factor

of two when the sums over the leading and next-leading logarithms are included.
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Figure 2: The three types of diagrams providing the long-distance description of K+ → π+νν
decay in the standard model. These diagrams correspond to those shown in Fig. 1 and result
when the massive W and Z propagators are treated as local. The right-most diagram receives
contributions from all three diagrams in Fig. 1 because the short-distance parts of the left and
center diagrams in that figure are not correctly captured by left and center diagrams above and
must be corrected by the diagram on the right.

The long-distance contribution which we will compute using lattice QCD can be represented
by the three diagrams shown in Fig. 2. These diagrams result from the effective theory which
represents the standard model at long distances and is described by the weak Hamiltonian:

Heff =+
GF√

2

 ∑
q=u,c
ℓ=e,µ,τ

(
V ∗

qsO
∆S=1
qℓ +VqdO∆S=0

qℓ
)
+ ∑

ℓ=e,µ,τ
OZ
ℓ + ∑

q=u,c
λqOW

q

+O0. (2)

This expression for Heff has a hybrid form. The three terms in curly brackets are of order GF ,
typically identified as first-order and given by:

O∆S=1
qℓ = C∆S=1(sq)V−A(νℓℓ)V−A O∆S=0

qℓ =C∆S=0(qd)V−A(ℓνℓ)V−A (3)

OZ
ℓ = CZ ∑

q=u,c,d,s

(
T q

3 qγµ(1− γ5)q−Qem,q sin2 θW qγµq
)

νℓγµ(1− γ5)νℓ (4)

OW
q = C1(saqb)V−A(qbda)V−A +C2(saqa)V−A(qbdb)V−A (5)

while the fourth, right-most operator is second-order and has the form

O0 =C0 ∑
ℓ=e,µ,τ

(sd)V−A(νℓνℓ)V−A. (6)

The operators O∆S=1
qℓ and O∆S=0

qℓ of Eq. (3) describe first-order semi-leptonic decays and correspond
to the two vertices in the left-most diagram of Fig. 2. The operator OZ

ℓ of Eq. (4) describes a similar
lepton-quark coupling coming from Z exchange while the two operators which appear in OW

q are
the usual color-mixed and color-unmixed operators describing non-leptonic kaon decay.

In contrast, the operator O0 is a two-quark/two-lepton, strangeness-changing neutral current
operator which appears at second order in GF . This operator plays two, closely-related roles in
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Heff. First it represents the short-distance parts of the underlying standard-model processes that
contribute to the decay K+ → π+νν . Second it acts as a counter-term that is needed when the
operator Heff is used at second order. As is standard in effective field theory, when the operators
introduced into Heff to describe first-order process are used in a second-order calculation (as is
the case in the two left-most diagrams in Fig. 2) new divergences appear that require new counter
terms. The operator O0 plays this role as well. Thus, the Wilson coefficient C0, which appears in
the definition of O0 in Eq. (6), contains convention-dependent parts needed to compensate for the
regularization scheme introduced to make the second-order diagrams of Fig. 2 well-defined.

1. Lattice QCD formulation

In order to calculate the long-distance contribution to K+ → π+νν we must overcome two dif-
ficulties: i) The appearance of unphysical terms (explained below) in the second-order, Euclidean-
space expression for the decay amplitude. ii) The need to renormalize the logarithmic dependence
on the lattice cutoff coming from the integration region where the two vertices in the left-most
diagrams of Fig. 2 collide. Both of these difficulties have been treated before in calculations of the
KL−KS mass difference [5, 6] and the long-distance part of indirect CP violation parameter εK [7].

It is natural to compute a second-order decay amplitude in Euclidean space by evaluating the
matrix element of the usual second-order product of operators which cause the decay:∫ T

2

− T
2

dta⟨πνν |T
(

OA(ta)OB(tb)
)
|K⟩ = −∑

n

{
⟨πνν |OA|n⟩⟨n|OB|K⟩

MK −En

(
1− e(MK−En)(

T
2 −tb)

)
(7)

+
⟨πνν |OB|n⟩⟨n|OA|K⟩

MK −En

(
1− e(MK−En)(

T
2 +tb)

)}
,

where the operators OA and OB are replaced by the first-order terms in Heff given in Eq. (2). The
left-hand side is an expression for the decay amplitude that could be extracted from the Euclidean,
time-development operator, expanded in powers of GF . As can be seen from the sum over in-
termediate states introduced on the right-hand side, this expression contains unwanted transition
amplitudes to states of lower energy than the initial K+ state. These contributions, found in the
exp{(MK −En)

T
2 } terms in Eq. (7), grow exponentially with the integration range T for states |n⟩

with En < MK . In time-dependent, Minkowski-space perturbation theory such terms instead oscil-
late and are eliminated by a proper definition of the large-time limit. Fortunately in a finite volume
the resulting discrete, unphysical, exponentially-growing terms can be separately calculated and re-
moved, resulting only in an increased statistical error. In the calculation reported here we evaluate
the four-point function on the left-hand side of Eq. (7) and perform these needed subtractions.

The problem of regulating and renormalizing the singular, bilocal, operator products appearing
in Eq. (7) has already been solved in the perturbative treatments of this decay where the effective
Hamiltonian given in Eq. (2) (which we will use) has been worked out [8]. In this continuum treat-
ment the log-divergent part of bilocal operator product is made finite by dimensional regularization
and the MS renormalization scheme. The resulting dependence on the MS renormalization scale
µMS is canceled by the appropriate counter term which appears in the second-order, four-fermion
operator O0 in Eq. (2). This µMS -dependent counter term is chosen so that the full second-order
calculation using Heff correctly reproduces the low energy behavior of the standard model.
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For our lattice calculation we follow a closely related strategy which differs from the contin-
uum approach in two respects. First we need not match our effective lattice theory to the complete,
standard-model amplitude. Since the continuum, MS-renormalized, effective theory already de-
scribes the long-distance behavior of the standard model, we need only match with that formulation.
Second, we replace dimensional renormalization by a generalization of the Rome-Southampton,
regularization-invariant, RI/SMOM procedure, appropriate for a lattice calculation.

Specifically we begin with the continuum, MS version of Eq. (2). Following standard methods,
the local second order operator OMS

0 can be easily expressed as a lattice operator times a known
coefficient which will depend on µMS. Likewise the other first-order terms can be also expressed in
terms of lattice operators. The new ingredient is our method for representing the MS-renormalized,
second-order, bilocal operator on the lattice. Our strategy is summarized by the following equation:{∫

d4xT
(

OMS
A (x)OMS

B (0)
)}MS

(8)

= ZAZB

{∫
d4xT

(
OLat

A (x)OLat
B (0)

)}Lat

+
(

ZAZBXLat→RI
AB +Y RI→MS

AB

)
OMS

0 (0).

The left-hand side is an example continuum expression which, together with the easier four-fermion
operator OMS

0 , accurately describes the standard model at low energies. The left-most term on the
right-hand side is the corresponding lattice operator. We have introduced the standard renormal-
ization factors ZA and ZB that convert the lattice operators into their MS equivalents. Thus, when
x ̸= 0 Eq. (8) is obeyed without the need for the O0(0) term. We handle the singularity as x → 0 in
two steps. First we add the counter term ZAZBXLat→RI

AB O0 to convert that product of lattice operators
into one which obeys an RI/SMOM condition. In particular we require that a Landau-gauge-fixed
Green’s function including this bilocal operator and four off-shell, external fermion lines vanishes
for specific, non-exceptional external momenta defined at a scale µRI. Second we use QCD per-
turbation theory, employed at the large scale µRI ≫ ΛQCD to determine the coefficient Y RI→MS

AB to
convert our RI to the usual MS renormalization of the x → 0 singularity in the bilocal product.

Finally we mention a further issue arising when Eq. (7) is used in finite volume. As can be seen
from that equation, a singularity appears as the energy of a discrete, finite-volume state approaches
MK . Such large, finite-volume corrections are well-understood and can be removed [9].

2. Exploratory lattice QCD calculation

We will now describe a first calculation in which these methods are implemented. We use
an RBC/UKQCD 163 ×32 ensemble with Mπ = 420 MeV, MK = 540 MeV and 1/a = 1.73 GeV.
We use an unphysically light charm quark mass, mc(2GeV)MS = 863 MeV to reduce finite lattice
spacing errors. We calculate all relevant diagrams on 800 gauge configurations and employ low-
mode deflation using 100 low modes. For each separation between the kaon source and pion sink
we perform separate measurements in which the kaon source is placed on each of the 32 time slices.
The quarks are treated as domain wall fermions with an extent of 16 in the fifth dimension. The
internal lepton is treated as an overlap fermion propagating in an infinite time extent.

For the WW -exchange graphs we evaluate the scalar amplitude FWW [1] which depends on
the two Dalitz kinematic variables for this three-body decay. The vector and axial current ma-
trix elements that describe the Z-exchange results are described by familiar, Kl3-like form factors

4
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f+
(
(pK − pπ)

2
)
. In analyzing and presenting our long-distance results we ignore what is a likely

mild dependence of these quantities on the kinematic variables. This allows us to use Pc of Eq. (1)
and the terms of which it is composed to represent matrix elements, treated here as constants.
We use an initial kaon which is at rest and study both p⃗π = (0.0414,0.0414,0.0414)/a and, to
determine the contribution of the vector current in Z-exchange case, we also study p⃗π = 0⃗.

We present our preliminary results using the quantity ∆Pc,u, defined as follows. The continuum
result for the decay amplitude is conventionally expressed as the sum of matrix elements of bilocal
and local MS operators. The contribution of the bilocal operator (which is the target of our calcula-
tion) is typically treated by “integrating out” the charm and up quarks and replacing the bilocal op-
erator with an operator proportional to the four-fermion operator O0 of Eq. (6). The proportionality
constant is determined by equating zero-momentum Green’s functions containing the bilocal and
local operators. We will denote the resulting total charm contribution as PPT

c = 0.365(12) [4], since
all of PPT

c is determined perturbatively except for the matrix element of the local operator. Finally,
a correction is added to incorporate more refined estimates of the up-quark and other long-distance
effects as well as terms suppressed by (ΛQCD/mc)

2, conventionally written as δPc,u = 0.04(2) [10].
Here we replace this long-distance correction δPc,u by the explicit lattice QCD evaluation of

the MS, bilocal operator, introducing ∆Pc,u as the result for this bilocal operator matrix element
minus the perturbative estimate of that matrix element described above. While ∆Pc,u should be
added as a “correction” to PPT

c , it contains a complete evaluation of the bilocal operator matrix
element and a term subtracting the standard evaluation of that matrix element found in PPT

c . In
Fig. 3 we show the contributions of the WW and Z-exchange graphs as a function of µRI = µMS.
Note the large cancellation between the contributions of these two types of diagrams to ∆Pc,u.
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Figure 3: Four quantities are shown: the unrenormalized lattice matrix element of the bilocal opera-
tor (gray band); the RI-renormalized version of that same matrix element (red circles); the complete
∆Pc,u result including conversion to MS and subtraction of the conventional bilocal operator matrix
element (green squares) and the result for the total charm contribution PPT

c,u +∆Pc,u (blue diamonds).
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3. Conclusion

Our result from this exploratory calculation with unphysical charm and light quark masses is

∆Pc,u(µMS = µRI = 2 GeV) = 0.0040(13)(32), (9)

where the first error is statistical and the second an estimate of the error implied by the residual
µ dependence of the complete result: Pc,u = PPT

c,u +∆Pc,u. We emphasize that a comparison with
the result of Ref. [10] for δPc,u is premature and even the large cancellation and subsequent small
value for ∆Pc,u may change when the calculation is repeated with physical quark masses. However,
this first, complete calculation of these long-distance effects demonstrates that these effects are
now practical targets for future work. Accurate results with controlled systematic errors should be
attainable in three to four years when adequate computing resources become available.

We thank our colleagues from the RBC and UKQCD collaborations for many helpful discus-
sions. N.H.C and X.F are supported by US DOE grant #DE-SC0011941. A.L is supported by an
EPSRC Doctoral Training Centre grant (EP/G03690X/1). A.P and C.T.S are respectively supported
by UK STFC grants ST/L000296/1 and ST/L000458/1.
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