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1. Introduction

Minimally doubled fermions in recent times have drawn attention as promising lattice for-
mulations of chiral fermion. There are two minimally doubled fermion formulations, one is by
Karsten[1] and Wilczek[2] and the other one was developed by Creutz[3] and Borici[4]. Both
the formulations break the hypercubic symmetry on the lattice [5] and thus allow non-covariant
counter terms. So, the important question is how bad the effects of the symmetry breaking are in a
numerical simulation. It was shown that a consistent renormalizable theory for minimally doubled
fermion can be constructed by fixing only three counter terms allowed by the symmetry and the
counter terms for BC action at one loop in perturbation theory have been evaluated [6, 7]. But,
till date, sufficient numerical studies of the minimally doubled fermions have not been done. The
purpose of this work is to investigate Borici-Creutz(BC) formulation numerically in some simple
models. It was shown that in presence of gauge background with integer-valued topological charge,
BC action satisfies the Atiyah-Singer index theorem[8]. In [9], using BC fermion we have shown
a chiral phase transition in the Gross-Neveu model. In this work, we evaluate the meson spec-
troscopy of the Gross-Neveu model as well as in 2D QED (QED2) with BC fermion. Chiral and
parity-broken(Aoki) phase structures of the Gross-Neveu model have been studied for Wilson and
Karsten-Wilczek fermions [10, 11]. By hybrid Monte Carlo(HMC) simulation we investigate the
excited state spectrum of the lattice Gross-Neveu model. Study of the excited state spectroscopy
in the Gross-Neveu model with Wilson fermion [12] found the ground state as the only bound
state and the other excited states as scattering states. With the BC fermion in this work, we have
obtained three states, two of them are bound states (ground state and one excited state) and the
third one appears to be a scattering state. Next we investigate the meson mass spectrum in QED
in two dimension. QED2 having confinement serves as a toy model for QCD and hence QED2 or
Schwinger model has been studied to great extent on lattice (see [13, 14] and references therein).
Schwinger model using Hamiltonian formalism on lattice has been investigated in [15]. QED2 also
serves as a good toy model for numerical study of chiral fermions. A 2-flavor Schwinger model
with light fermions have been studied with dynamical overlap fermion [16, 17].

2. Spectroscopy of the Gross-Neveu model

The free BC action in 2D is written as,

S = ∑
n

[
1
2 ∑

µ

ψnγµ(ψn+µ −ψn−µ)−
ir
2 ∑

µ

ψn(Γ− γµ)(2ψn−ψn+µ −ψn−µ)

−i(2− c3)ψnΓψn +m0ψnψn] , (2.1)

where, µ = 1,2 and Γ = 1
2(γ1 + γ2) satisfies {Γ,γµ} = 1. Including four-fermion interactions, the

Gross-Neveu model on lattice is given by

S = ∑
n

[
1
2 ∑

µ

ψnγµ(ψn+µ −ψn−µ)−
ir
2 ∑

µ

ψn(Γ− γµ)(2ψn−ψn+µ −ψn−µ)

−i(2− c3)ψnΓψn +m0ψnψn−
g2

2N
[(ψnψn)

2 +(ψniΓψn)
2
]
, (2.2)
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where, g is the coupling constant which we consider the same for both four point (scalar and vector)
interactions and we set r = 1 in our calculations. Since the parity is broken by the BC action, a
counter term c3 is added to it. Detailed discussion about the c3-term can be found in [9]. The action
is rewritten explicitly in terms of the auxiliary fields as

S = ∑
m,n

ψmMmnψn +
N

2g2 (σ
2 +π

2
Γ), (2.3)

where N is the number of flavors. The auxiliary fields are

σ =−g2

N
(ψψ), πΓ =−g2

N
(ψiΓψ). (2.4)

For meson mass spectrum calculation, we need to evaluate the correlators

Ci j(t) = 〈Oi(t)O
†
j(0)〉. (2.5)

In absence of the orbital angular momentum in 2D, the interpolators (Oi) are labelled by parity and
charge conjugation only. We need to choose appropriate operators which have good overlaps with
the low lying states. For the meson spectroscopy, we consider only the odd parity interpolators.
The even parity interpolators correspond to condensate[12] and are not considered. Under parity
ψ(x, t)→ γ2ψ(−x, t) and the odd parity interpolators can be constructed with γ1 or γ5. Along
with the local source, one can also construct the interpolators with the fields at different lattice
sites shifted along the spatial direction ie., with ψ(x± n, t) . If one considers a relative negative
sign in between ψ(x+ n, t) and ψ(x− n, t) then this corresponds to a derivative source which are
found to be important for excited state spectroscopy[12, 18]. Here we list some of the parity odd
interpolators for the GN model which we expect to couple to ground state as well as excited states:

O1(t) = ψ(x, t)γ5ψ(x, t)

O2(t) =
1
4
(
(ψ(x+m, t)−ψ(x−m, t)

)
γ5
(
ψ(x+n, t)−ψ(x−n, t)

)
,(m = 3,n = 3)

O3(t) =
1
4
(
(ψ(x+m, t)−ψ(x−m, t)

)
γ5
(
ψ(x+n, t)−ψ(x−n, t)

)
,(m = 5,n = 3) (2.6)

O4(t) =
1
4
(
(ψ(x+m, t)−ψ(x−m, t)

)
γ1
(
ψ(x+n, t)−ψ(x−n, t)

)
,(m = 4,n = 3)

O5(t) =
1
4
(
(ψ(x+m, t)+ψ(x−m, t)

)
γ1
(
ψ(x+n, t)−ψ(x−n, t)

)
,(m = 5,n = 3),

where sum over x is implied in order to have zero momentum states and γ5 = iγ1γ2. All the inter-
polators are odd under C-parity (C =−1). With different values of m and n, we can have different
interpolators, they do not couple to new states but only reproduce the similar results. The effective
masses are extracted from the correlators at different time slices by the formula

Me f f = ln
(

c(t)
c(t +1)

)
. (2.7)

The diagonal correlators Cii and corresponding effective masses are shown in Fig.1(a) and (b) for
m0 = 0.03 and β = 0.7. The small value of mass is taken to be close to the massless limit. As shown
in Fig. 1(b), except for the ground state, this procedure is not suitable to extract the excited states.
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Figure 1: Diagonal correlators (in the plots c1 ≡C11, etc.) and effective mass of meson in GN model for
16×48 lattice
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Figure 2: Eigenvalues and effective mass of the correlators. (a) and (b) for 16×48; (c) and (d) for 18×48;
and (e) and (f) for 24×48 lattices.
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Figure 3: Volume dependence of the effective mass.

The variational method [19, 20] provides a better picture for the excited state meson spectroscopy.
In this method, one solves the generalized eigenvalue problem

C(t)~v(n) = λ
(n)(t)C(t0)~v(n), (2.8)

where C(t) is the N×N correlation matrix constructed from N interpolators Oi, (i = 1,2 · · · ,N).
The n-th eigenvalue behaves as

λ
(n)(t) = e−(t−t0)En

[
1+O(e−(t−t0)∆n)

]
, (2.9)

where En is the energy of the n-th state and ∆n is the energy gap between the neighboring states.
In Fig.2 we show the eigenvalue and effective mass plots by solving the generalized eigen value
problem for 16× 48, 18× 48, and 24× 48 lattices with O1, O2 and O3 interpolators. We are
unable to get any extra stable mass values by increasing the matrix dimension of the correlator
basis and the results become noisier with more correlators. So, we present the results with only
three correlators. In Fig.3, the volume dependence of the effective masses are shown. The ground
state and the first excited state show no volume dependence and hence can be considered as bound
states. The second excited state however shows volume dependence. Specially, for 18×48 lattice
size, we get an anomalously large mass for the second excited state. The fit for the second excited
state shown in Fig.3 includes this anomalous point. In general, scattering states show strong volume
dependence and increase linearly with 1/L2, the volume dependence of the second excited state in
our case is not very conclusive. But looking at the fit of the points we expect it to be a scattering
state. The results can be contrasted with [12], where except the ground state, all the excited states
show strong volume dependence and are scattering states.

3. Meson in 2D QED

In this section, we extend the study of spectroscopy with BC fermion formulation to gauge
theory. For this purpose, we implement the BC fermion in a 2D U(1) gauge theory and extract the
meson masses. QED in 2D is also a confined theory and serves as a good toy model for QCD. The
lattice action with BC fermion reads,

S = β ∑
p
[1− 1

2
(Up +U†

p)]+φ
†(D†D)−1

φ . (3.1)
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where Up is the Wilson Plaquette action with

Up =Ui,µUi+µ,νU†
i+ν ,νU†

i,ν . (3.2)

where, i is the site index and µ,ν are the directions and D is the BC Dirac operator defined as

Dmn =
1
2
(γµ + i(Γ− γµ))Uµ(n−µ)δn,m+µ −

1
2
(γµ − i(Γ− γµ))U†

µ(n)δn,m−µ − ((2− c3)iΓ−m0)δm,n. (3.3)

Here we consider only the lowest meson state. The correlator with operator O1(t) couples to the
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Figure 4: Effective mass of meson in 2D QED for m0 = 0.05 and β = 0.3.
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Figure 5: Fermion mass dependence of the effective pion mass in QED2 for a fixed β = 0.3.

ground state and provides the mass for the lowest state. In Fig.4(a) we have shown the correlator
at different time slices and the effective meson mass in 2D QED. The Schwinger model in con-
tinuum can be written as a bosonic theory. The pion mass in the bosonized theory can be exactly
calculated[21, 22] and for m0� g, can be written as

Me f f = A mN f /(N f +1)
0 g1/(N f +1) = A m5/4

0 g1/5 (for Nf = 4), (3.4)

= A m4/5
0 β

−1/10

where A is a constant and β = 1/g2. In Fig.5, we show the fermion mass dependence of the
effective pion mass (M5/4

e f f ∝ m0). The plot is done for small β so that m0 is always less than g. The
lattice data are in well agreement with the analytic result.
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4. Summary

Minimally doubled fermions may provide an efficient lattice formalism to study chiral fermion
which is expected to be computationally cheaper than the other existing lattice formalisms. Since,
both the minimally doubled fermion formulations (KW and BC) break hypercubic symmetries on
the lattice, they require non-covariant counter terms. In this work, we have studied the BC fermion
in some simple models. We have extracted the excited state mass spectrum in Gross-Neveu model
using BC fermion. We have also evaluated the lowest lying meson mass in QED2. For light
fermion, the meson is much heavier that 2m0 and for heavy fermion the meson mass becomes less
than 2m0 as the renormalized fermion mass becomes much smaller than the bare mass at strong
coupling. Our investigations suggest that BC fermion formalism might be a promising alternative
to study the chiral fermions on a lattice.
J. G. likes to thank Stephan Dürr for his useful comments.
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