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1. Introduction

Rare B decay modes provide one of the best opportunities in the search for physics beyond

the Standard Model (BSM). Among them, B → K∗l+l− is regarded as one of the most important

channels, as the polarization of the K∗ allows a precise angular reconstruction resulting in many

observables which can be tested in the Standard Model (SM) and its extensions [2]. In order to

perform this beautiful test of the Standard model, however, one should have the corresponding

hadronic matrix elements, which affect the branching ratios involved in the fit to the experimental

data, under full control. Lattice QCD provides a framework to calculate these matrix elements in

the low-recoil region [3]. Here, the calculations can be carried out from first principles and are

devoid of any model-dependent assumptions. A potential source of the systematic uncertainty is,

however, the fact that K∗ is a resonance and not a stable particle, whereas the technique, which is

used to extract this matrix element on the lattice, is designed for stable particles. The resonance

matrix elements are defined through the analytic continuation into the complex energy plane to the

resonance pole, and the purpose of the present work is to demonstrate explicitly, how this procedure

can be performed with the lattice input. Moreover, we describe this procedure for the general case,

where multiple channels are present. In the present context, this issue is more of academic interest

(for the physical quark masses, the ηK channel lies significantly higher than K∗ resonance and

couples very weakly to it), but the general formalism might be useful for the analysis of other

systems (e.g., the electromagnetic form factors of the Λ(1405) resonance).

It should be pointed out that the computation of the matrix elements, which involve strongly

interacting particles in the in- or out- states, has already been addressed in the past. In their seminal

paper [4], Lellouch and Lüscher have shown, how the finite volume artifacts due to the final state

interactions can be removed in the K → 2π weak decay amplitude. The subsequent work (see,

e.g., Refs. [5]) was mainly focused on the generalization of the above result to the case of the

multi-channel scattering, non-rest frames, etc. The analytic continuation to the resonance pole was

considered in our previous papers [6, 7]. In the present work, we complete the job by performing the

continuation in the multi-channel case, as well as by clarifying the issue with the photon virtuality

at the resonance pole.

We use the non-relativistic EFT framework in a finite volume to achieve the goals outlined

above. With the same non-relativistic Lagrangian, one calculates the matrix elements in question

twice – in the infinite and in a finite volume – and establishes a connection between these two

quantities. In the final results, any notion of the non-relativistic approach disappears, as it should.

We find this approach algebraically simpler than the one based on the Bethe-Salpeter equation (see,

e.g., Refs. [8]). In the end, both methods have the same range of applicability and one arrives at

the same results.

2. Matrix elements on the lattice

In the infinite volume, Euclidean space, rest-frame of the K∗ meson, the seven semileptonic

B → K∗ form factors V,A0,A1,A12,T1,T2,T23 are defined in a standard manner (see, e.g., Ref. [1]).

These expressions are written, however, under the assumption that the K∗ meson is stable and

should be modified accordingly in case of a resonance. Namely, in this case one measures – at a
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given lattice volume – the matrix elements of the currents between the one-B-meson state |B(p)〉
and the eigenstate |n〉 of the total Hamiltonian H in a finite volume, which corresponds to the

discrete eigenvalue En and strangeness S =+1. One may denote these matrix elements as FM, M =

1, · · · ,7 (all other indices are suppressed). The volume-dependence of FM is irregular, and the

infinite-volume limit cannot be performed straightforwardly. The question now is, how are the

quantities FM related to the seven semileptonic form factors V,A0,A1,A12,T1,T2,T23 and how the

latter are defined in the case when the K∗ meson is unstable.

3. Two-body scattering in a finite volume

To keep things completely general, we derive the Lüscher-Lellouch formula in the two-channel

case (adding more two-particle channels is straightforward). The infinite-volume T -matrix, corre-

sponding to the final-state interactions, is parameterized in terms of two scattering phases δ1(p1),

δ2(p2) and mixing parameter ε(E)

T = 8π
√

s

(

1
p1
(c2

ε eiδ1 sinδ1 + s2
ε eiδ2 sin δ2)

1√
p1 p2

cε sε(e
iδ1 sinδ1 − eiδ2 sin δ2)

1√
p1 p2

cε sε(e
iδ1 sin δ1 − eiδ2 sinδ2)

1
p2
(c2

ε eiδ2 sinδ2 + s2
εeiδ1 sinδ1)

)

, (3.1)

where sε ≡ sinε(E), cε ≡ cosε(E). Here, p1 and p2 denote the relative 3-momenta in the πK and

ηK channels, respectively. The T -matrix obeys the Lippmann-Schwinger equation T =V +V GT ,

where all quantities are taken on shell [7]. Here, V denotes a potential and G(s) is a loop function

matrix given by

G = diag

(

ip1

8π
√

s
,

ip2

8π
√

s

)

. (3.2)

The parameterization of the potential V in terms of the parameters δ1(p1), δ2(p2) and ε(E) reads:

V = 8π
√

s

(

1
p1
(t1 + s2

ε t) − 1√
p1 p2

cε sε t

− 1√
p1 p2

cε sε t 1
p2
(t2 − s2

ε t)

)

, (3.3)

where ti ≡ tanδi(pi) and t = t2 − t1. Clearly, the potential matrix V is real and symmetric. The

finite-volume counterpart of the loop function matrix Eq. (3.2), which we denote by GL, reads

GL = diag

(

− p1

8π
√

s
cot φ(p1) ,−

p2

8π
√

s
cotφ(p2)

)

. (3.4)

Here, φ(pα) are the volume-dependent functions that are related to the Lüscher zeta-function [1].

Further, the TL-matrix is a scattering amplitude in a finite volume that is defined formally also

through a Lippmann-Schwinger equation with the same potential V and G replaced by GL. It takes

the form:

TL =
8π

√
s

f (E)

(

1
p1
[t1τ1(t2 + τ2)+ s2

ετ1τ2t] − 1√
p1 p2

cε sε τ1τ2t

− 1√
p1 p2

cε sε τ1τ2t 1
p2
[t2τ2(t1 + τ1)− s2

ετ1τ2t]

)

, (3.5)

where τα ≡ tan φ(pα) and f (E)≡ (t1+τ1)(t2+τ2)+s2
ε (t2−t1)(τ2−τ1). The two-channel Lüscher

equation that determines the discrete spectrum En reads f (En) = 0. The quantity TL, as a function

of E , has simple poles on the real axis at E = En with factorizing residues

T
αβ

L =
fα fβ

En + iP0

+ · · · . (3.6)
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Here, the quantities f1, f2 can be brought to the following form by applying the Lüscher equation:

f 2
1 =

8π
√

s

p1

τ2
1 (t2 + τ2 − s2

ε t)

f ′(E)

∣

∣

∣

∣

E=En

, f 2
2 =

8π
√

s

p2

τ2
2 (t1 + τ1 + s2

ε t)

f ′(E)

∣

∣

∣

∣

E=En

, (3.7)

where f ′(E)≡ d f (E)/dE .

4. Derivation of the Lellouch-Lüscher equation

Let O(x) be a local operator with quantum numbers of the K∗ that transforms according to a

given irrep, and let O(t) = ∑x O(x, t). Consider the following Euclidean two-point function

D(x0 − y0) = 〈0|O(x0)O
†(y0)|0〉 . (4.1)

The spectral representation of this two-point function takes the form

D(x0 − y0) = ∑
n

e−En(x0−y0)|〈0|O(0)|En〉|2 . (4.2)

On the other hand, this two-point function can be calculated within the non-relativistic EFT in a fi-

nite volume, where it is given by a sum of bubble graphs. Let the quantities Xα , α = 1,2 denote the

couplings of the operator O to the respective channels. Since the corresponding Lagrangian con-

tains terms with an arbitrary number of spatial derivatives, one has Xα = Aα +Bαp2
α + · · · , where

Aα ,Bα , . . . contain only short-range physics. Summing up all bubbles yields the two-channel T -

matrix. Using Eq. (3.6), it can be straightforwardly demonstrated that the two-point function obeys

the spectral representation (4.2). The expression of the matrix element in this spectral representa-

tion can be directly read off:

|〈0|O(0)|En〉|=
V 1/2

8πEn

∣

∣

∣

∣

2

∑
α=1

Xα pα(En)τ
−1
α (En) fα(En)

∣

∣

∣

∣

. (4.3)

Next, we consider the three-point function

ΓM(x0, p) = 〈0|O(x0)J
M(0)|B(p)〉, M = 1, . . .7. (4.4)

Here, the JM(0) denote the current operators, see Ref. [1]. Inserting a complete set of states, we

get the spectral representation of ΓM(x0, p)

ΓM(x0, p) =∑
n

e−Enx0〈0|O(0)|En〉FM(En, |q|) , (4.5)

where |q|= p denotes the magnitude of the photon 3-momentum in this frame.

At the next step, we again calculate the three-point function in the non-relativistic EFT. Denot-

ing the sum of all two-particle irreducible diagrams in the respective channel by F̄M
α (E, |q|), α =

1,2, we finally get

ΓM(x0, p) =
V −1/2

64π2E2
n
∑
n

e−Enx0

2

∑
α ,β=1

[Xα pα(En)τ
−1
α (En) fα(En)]

× [pβ (En)τ
−1
β (En) fβ (En)F̄

M
β (En, |q|)]. (4.6)
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From this expression, one may directly read off the expression for the finite-volume matrix element

|FM(En, |q|)|=
V −1

8πE

∣

∣p1τ−1
1 f1 F̄M

1 + p2τ−1
2 f2 F̄M

2

∣

∣

∣

∣

∣

∣

E=En

. (4.7)

The last step that needs to be done is to relate the above defined quantities F̄M
1 , F̄M

2 to the (infinite-

volume) decay amplitudes A M
1 (B → πKl+l−) and A M

2 (B → ηKl+l−) through the two-channel

Watson theorem. After summing up the two-particle reducible diagrams in the infinite volume, one

gets

A
M

1 =
1√
p1

(uM
1 cε eiδ1 −uM

2 sε eiδ2), A
M

2 =
1√
p2

(uM
2 cε eiδ2 +uM

1 sε eiδ1), (4.8)

where

uM
1 = (

√
p1cε F̄M

1 +
√

p2sε F̄M
2 )cosδ1, uM

2 = (
√

p2cε F̄M
2 −√

p1sε F̄M
1 )cos δ2. (4.9)

This is the generalization of the Lellouch-Lüscher formula for the two-channel case. Note that

the key to the derivation was the fact that the two-particle irreducible diagrams, which describe

the short-range dynamics, are the same in a finite and in the infinite volume (this statement holds

up to the exponentially suppressed contributions). Note also that the unknown couplings Xα have

been canceled in the final formula which does not bear any reference to the non-relativistic EFT

framework either.

5. Form factors at the K∗ resonance pole

The current matrix elements involving resonances have the proper field-theoretical meaning

only if they are analytically continued to the resonance pole position. The advantage of such a def-

inition is that it is process-independent. In this section, we only briefly sketch the procedure which

should be used for the continuation. The key to the procedure lies in the fact that the quantities

ũM
α = uM

α /sin δα , α = 1,2, where uM
α were introduced in Eq. (4.9), are low-energy polynomials in

the vicinity of a narrow resonance (i.e., their expansion in Taylor series does not contain a small

scale related to the resonance width). Owing to this property, it is possible to approximate these

quantities with polynomials and determine the coefficients of these polynomials from fit to the lat-

tice data. Recalling that the measured matrix elements are functions of two kinematic variables:

the CM energy in the final state interactions and the photon momentum q, it is clear that, in order

to perform a fit, one should “scan” the CM energy range near the resonance mass, leaving the other

variable q fixed. This can be done by performing simulations in asymmetric boxes or using (par-

tially) twisted boundary conditions [1, 6]. Once the fit is done, the analytic continuation reduces to

the evaluation of the polynomial at the (complex) resonance pole. The final result for the resonance

form factors at the pole is given by

FM
R (ER, |q|) =− i

8πE

(

p1h1F̄M
1 − p2h2F̄M

2

)

∣

∣

∣

∣

E=ER

, (5.1)
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where the F̄M
α are obtained from ũM

α evaluated at the pole, and the quantities hα determine the

residue of the infinite-volume scattering matrix at the pole on the second Riemann sheet

T
αβ

II (s) =
hα hβ

sR −P2
+ · · · , (5.2)

h2
1 =−8π

√
s

p1

2E(t2 + i− s2
εt)

h′(E)

∣

∣

∣

∣

E=ER

, h2
2 =−8π

√
s

p2

2E(t1 − i+ s2
εt)

h′(E)

∣

∣

∣

∣

E=ER

, (5.3)

where h′(E)≡ dh(E)/dE and h(E) = (t1 − i)(t2 + i)−2is2
ε(t2 − t1).

Finally, it can be explicitly checked that, in the limit of the infinitely narrow resonance,

FM(En, |q|)→
V −1

2En

FM
R (ER, |q|) , En → ER , (5.4)

where V denotes the lattice volume. In other words, in this limit, the form factor, extracted at the

pole, up to a normalization factor, coincides with the one measured on the lattice. Note that, for the

one-channel case, this has been already shown in Ref. [6].

6. Photon virtuality

The analytic continuation to the resonance pole yields the quantity FM
R (ER, |q|). Below, we

would like to briefly discuss one conceptual issue, related to the interpretation of this quantity.

Namely, we wish to know, what is the photon virtuality q2 for the resonance form factor, extracted

at the pole. In the literature, different statements have been made on this issue so far. We think that

a clarification is needed at this point.

According to the procedure, which is proposed in the present paper (see also Ref. [6]), the

finite-volume matrix element is measured at different two-particle energies En(L) and a fixed value

of |q|. After that, an analytic continuation is performed to the complex resonance pole, keeping |q|
fixed. Further, the photon virtuality becomes complex at the pole (see Fig. 1)

q2 =

(

ER −
√

m2
B +q2

)2

−q2 . (6.1)

From this pure kinematical consideration it becomes clear that it is not possible to keep the quantity

q2 real at the pole, unless one considers the B-meson of shell (which would be a rather unattractive

option). On the other hand, there is no alternative to the analytic continuation, because there is al-

ways a non-vanishing background on the real axis and the form factors become process-dependent.

7. Conclusions

In this work, we have studied the extraction of the B → K∗ transition form factors in the low

recoil region on the lattice.

• We have applied the non-relativistic effective field theory in a finite volume and reproduced

the two-channel analogue of the Lellouch-Lüscher formula.
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(ER,0)
(
√

m2
B + q2,q)

(q0,q)

Figure 1: The factorization of the amplitudes at the resonance pole. The photon virtuality q2 is complex.

• We have studied the extrapolation of the matrix elements to the complex resonance pole.

• We have shown that the photon virtuality is a complex quantity for the matrix elements

extracted at the pole.

• We have shown that, in the limit of the infinitely small width, up to a kinematical normaliza-

tion factor, the extracted form factors coincide with those directly measured on the lattice.

Acknowledgments: We thank R. Briceño and M. Mai for useful discussions. We acknowledge the

support by the DFG (CRC 16, “Subnuclear Structure of Matter” and CRC 110 “Symmetries and

the Emergence of Structure in QCD”) and by the Bonn-Cologne Graduate School of Physics and

Astronomy. This research is supported in part by Volkswagenstiftung under contract no. 86260,

and by the Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative

(PIFI) (Grant No. 2015VMA076).

References

[1] A. Agadjanov, V. Bernard, U.-G. Meißner and A. Rusetsky, Nucl. Phys. B 910 (2016) 387.

[2] A. Ali, P. Ball, L. T. Handoko and G. Hiller, Phys. Rev. D 61, 074024 (2000); C. Bobeth, G. Hiller

and D. van Dyk, Phys. Rev. D 87, 034016 (2013); D. Melikhov, N. Nikitin and S. Simula, Phys. Lett.

B 442, 381 (1998); F. Kruger and J. Matias, Phys. Rev. D 71, 094009 (2005); W. Altmannshofer,

P. Ball, A. Bharucha, A. J. Buras, D. M. Straub and M. Wick, JHEP 0901, 019 (2009); J. Matias,

F. Mescia, M. Ramon and J. Virto, JHEP 1204, 104 (2012).

[3] Z. Liu, S. Meinel, A. Hart, R. R. Horgan, E. H. Müller and M. Wingate, arXiv:1101.2726 [hep-ph];

R. R. Horgan, Z. Liu, S. Meinel and M. Wingate, Phys. Rev. D 89 (2014) 9, 094501; R. R. Horgan,

Z. Liu, S. Meinel and M. Wingate, PoS LATTICE 2014 (2015) 372.

[4] L. Lellouch and M. Lüscher, Commun. Math. Phys. 219 (2001) 31.

[5] M. T. Hansen and S. R. Sharpe, Phys. Rev. D 86 (2012) 016007; R. A. Briceño and Z. Davoudi, Phys.

Rev. D 88 (2013) 9, 094507; R. A. Briceño, M. T. Hansen and A. Walker-Loud, Phys. Rev. D 91

(2015) 3, 034501; R. A. Briceño and M. T. Hansen, Phys. Rev. D 92 (2015) 7, 074509.

[6] A. Agadjanov, V. Bernard, U.-G. Meißner and A. Rusetsky, Nucl. Phys. B 886 (2014) 1199;

[7] V. Bernard, D. Hoja, U.-G. Meißner and A. Rusetsky, JHEP 1209 (2012) 023.

[8] C. H. Kim, C. T. Sachrajda and S. R. Sharpe, Nucl. Phys. B 727 (2005) 218; N. H. Christ, C. H. Kim

and T. Yamazaki, Phys. Rev. D 72 (2005) 114506.

[9] M. Göckeler, R. Horsley, M. Lage, U.-G. Meißner, P. E. L. Rakow, A. Rusetsky, G. Schierholz and

J. M. Zanotti, Phys. Rev. D 86 (2012) 094513.

6


