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A simple integral relation between a complex weight and the corresponding positive distribution
is derived by introducing a second complex variable. Together with the positivity and normaliz-
ability conditions, this sum rule allows to construct explicitly equivalent pairs of distributions in
simple cases. In particular the well known solution for a complex gaussian distribution is general-
ized to an arbitrary complex slope. This opens a possibility of positive representation of Feynman
path integrals directly in the Minkowski time. Such construction is then explicitly carried through
in the second part of this presentation. The continuum limit of the new representation exists only
if some of the additional couplings tend to infinity and are tuned in a specific way. The approach
is then successfully applied to three quantum mechanical examples including a particle in a con-
stant magnetic field – a simplest prototype of a Wilson line. Further generalizations are shortly
discussed and an amusing interpretation of new variables is briefly mentioned.
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Basics and the main idea.
Generally quantum averages result from weighting observables with complex amplitudes rather

than with positive probabilities. The technique colloquially referred to as Complex Langevin can in
principle be used to replace this by a standard, statistical averaging over a suitably defined stochas-
tic process. The method was proposed long time ago [1, 2], but recently has attracted a new wave
of interest, especially in studies of quantum chromodynamics at finite chemical potential [3, 4].
Still, contrary to the real Langevin approach, there is no general proof of the convergence [5, 6]
and the evidence for the success is somewhat limited [7, 8, 9].

In this talk the recent construction of the positive probabilities, without any reference to
stochastic processes and/or Fokker-Planck equations, is described [10]. Thus above mentioned
difficulties are avoided albeit in a few simple test cases. Building on this the positive representation
for three, classic Feynman path integrals directly in the Minkowski space is derived. Notably one
of the discussed cases cannot be rendered positive by the Wick rotation.

The difficulties of Complex Langevin approach appear because of the poor convergence, if
any, of complex stochastic processes employed so far in various constructions. On the other hand
we do not really need to generate the positive two dimensional distribution with the stochastic
process in a complex plane. The only and the real problem is to find a positive distribution P(x,y)
which reproduces averages over a complex density ρ(x): 〈 f (x)〉ρ(x) = 〈 f (x+ iy)〉P(x,y). To this end
introduce the second, antiholomorphic variable z̄ = x− iy, and rewrite this "matching condition" in
a more general form (all contours are chosen such that the integrals exist)∫

Γz
f (z)ρ(z)dz∫
Γz

ρ(z)dz
=

∫
Γz

∫
Γz̄

f (z)P(z, z̄)dzdz̄∫
Γz

∫
Γz̄

P(z, z̄)dzdz̄
. (1)

This will be the case provided

ρ(z) =
∫

Γz̄

P(z, z̄)dz̄. (2)

This is the main result of the proposed "beyond Complex Langevin" approach. The connection
between ρ and P turns out to be very simple if z and z̄ are considered as the two independent
complex variables. The main challenge, however, remains in finding P(z, z̄) such that P(z,z∗) =
P(x,y) is positive and normalizable. It is shown below that this program can in fact be carried
through quantitatively, at least in few physically interesting cases, already providing some novel
results.
The generalized gaussian model

A more general, than originaly derived in [11], positive distribution can be obtained if we start
from a generic quadratic action for P(z, z̄) in two complex variables z and z̄

P(z, z̄) = e−S(z,z̄), S(z, z̄) = a∗z2 +2bzz̄+az̄2, (3)

with an arbitrary complex a = α + iβ and real b = b∗. Upon restriction to z̄ = z∗, P(x,y) is positive
and normalizable provided b > |a|. At the same time the the z̄ integral

ρ(z) =
∫

Γz̄

P(z, z̄)dz̄ =
1
2

√
π

−a
exp
(
−sz2), s =

|a|2−b2

a
. (4)
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not only reproduces, the well known solution of [11], but provides its generalization for all complex
values of the slope s [12]. In particular consider two interesting special cases.

1. For real and negative s, the complex density blows up along the real axis. On the other
hand the distribution P(x,y) is positive and normalizable at α > 0 and β = 0 producing the correct
average over the "divergent" distribution ρ . This explains a “striking example" observed in the
literature [13], namely that, upon change of variables, the complex Langevin simulation based on
(4) actually has the correct fixed point also for negative Re s. The answer is that the positive
distribution used until now is part of a richer structure (4), which accommodates negative Re s as
well.

2. Similarly, the complex density ρ(z) for purely imaginary s is readily represented by the
positive distribution P(x,y), which is perfectly well defined at α = 0 and arbitrary β , as long as
|β | < b. This opens an exciting possibility of positive representations for Feynman path integrals
directly in the Minkowski time. Such a construction is reviewed below.

In both cases the original density of Ref.[11] does not exist.
A nonlinear model

Another possible solution can be derived if we start from the action

S4(z, z̄) =
d
b
(a∗z2 +2bzz̄+az̄2)2,

with complex a and real b/d > 0. The density P(x,y) is again positive and normalizable on the x,y
plane. The complex density ρ4(z) can be then obtained in a closed form as

ρ4(z) =
i
2

∫
Γz̄

dz̄e−S4(z,z̄) =
i
2

(
b

2da2

) 1
4

exp
(
−σz4)(

σz4) 1
4 K 1

4

(
σz4) , (5)

with an arbitrary complex

σ =
d(b2−|a|2)2

2ba2 .

All contours (here and below) are such that the integrals exists. Basically one can choose straight
lines with slopes determined by the phase of a.

The density (5) has a simple leading asymptotics

ρ4(z)∼ e(−2σz4), z−→ ∞,

and therefore might be of some practical interest (e.g. in optimizing some reweighting algorithms).
The main point of this example is however, that the original idea, namely constructing positive
representations by introducing a second variable, seems to be general and points towards existence
of some unexplored yet structures.

Obviously there is a lot of freedom in choosing an initial action. It remains to be seen to what
extent this freedom allows to derive complex densities of wider physical interest.
Many variables and quantum mechanical Minkowski path integrals

For the action we take N copies of (3) and add the nearest neighbour couplings, with periodic
boundary conditions in zi and z̄i: zN+1 = z1, z̄N+1 = z̄1,z0 = zN , z̄0 = z̄N , a,c ∈C, b ∈ R,

SN(z, z̄) =
N

∑
i=1

az̄2
i +2bz̄izi +2cz̄izi+1 +2c∗ziz̄i+1 +a∗z2

i , PN(z, z̄) = e−SN(z,z̄). (6)

2



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
3
1
4

Beyond complex Langevin ... Jacek Wosiek

The complex density ρ(z) results from integrating PN(z, z̄) over all z̄ variables

ρ(z) =
∫ N

∏
i=1

dz̄iP(z, z̄) =
(

i
2

)N ∫ N

∏
i=1

dz̄i exp(−SN(z, z̄))≡ exp{−Sρ

N}.

The integration is elementary and one obtains for the effective action ( 2c = 2γ =−b+ |a|),

−Sρ

N(z) = A
N

∑
i=1

(zi− zi+1)
2− r (zi−1− zi+1)

2 , A =
b(b−|a|)

a
, r =

b−|a|
4b

. (7)

This is reminiscent, however does not quite agree, with the discretized Feynman action for a free
particle.

S f ree
N =

im
2h̄ε

N

∑
i=1

(zi+1− zi)
2, (8)

On the other hand, both constraints, namely A → im
2h̄ε

, and r =→ 0, can be satisfied in the limit
(referred from now on as lim1)

|a|,b→ ∞,b−|a|= m
2h̄ε

= const.≡ d, a =−i|a|. (9)

This completes the construction of the positive representation for the path integral of a free particle
directly in the Minkowski time.

All quantum averages can now be obtained by weighting suitable, i.e. complex in general,
observables with the positive and normalizable distribution PN(xi,yi) = exp(−SN(zi,z∗i )) , and then
taking the limit (9) followed by the continuum limit: N→ ∞,ε → 0,Nε = const ≡ T .

Upon slightly different identification of parameters the action (6) covers also the harmonic
oscillator case (with the frequency ω).

−Sρ

N(z) =
im

2h̄ε

(
(z1− z2)

2− ω2ε2

2
(z2

1 + z2
2)

)
+(nnn).

Similarly to the free particle, the nnn terms will vanish for large |a| and b. However the first limit
(lim1) has to be taken along little more complicated trajectory. A possible parametrization in terms
of one independent variable ν → 0, is (a =−i|a|)

b =
µ

ν
, |a|= µ

ν
ζ (ν ,ρ), 2γ =−µζ (ν ,ρ), ζ (ν ,ρ) =

√
1−2ν2ρ +ν2ρ2−ν(1−ρ)

1−ν2 , (10)

and µ and ρ depend on N and parameters of the harmonic oscillator in the continuum

ρ =
ω2T 2

2(N−1)2 , µ =
m(N−1)

2h̄T
.

This is the main modification compared to the free particle. With the first limit taken along
the trajectory (10) the action (6) provides a positive representation for Minkowski path integral of
a one-dimensional harmonic oscillator.

Positivity of the restricted P(zi,z∗i ) is evident from the construction (6) while the normalizabil-
ity can be seen by inspecting the eigenvalues of the real form SN(xi,yi). All but one eigenvalues
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are indeed positive. Due to the translational symmetry of the free particle problem, one eigenvalue
is zero. The same eigenvalue becomes negative for the harmonic oscillator representation. Both of
them can be dealt with in a standard manner.

Perhaps the most interesting example is that of a charged particle in a constant magnetic field,
as it does not admit positive representation even after the Wick rotation. On the other hand the
present approach offers a positive solution. It is well known since the time of Landau that the
problem can be mapped into a one dimensional harmonic oscillator with the shifted centre of os-
cillations. Therefore we need only to rephrase this equivalence in the language of propagators. To
this end rewrite the Feynman kernel in the gauge used by Landau, ~A = (0,B,0),

KLG(xb,yb,T ;xa,ya,0) = exp
{

im
2h̄

(
ω

2
cot

ωT
2
(
∆x2 +∆y2)+ω(xa + xb)∆y

)}
,

and split it as follows (∆x = xb− xa,∆y = yb− ya)

KLG = exp
{

i
h̄

m
2
(
ω(xa + xb)∆y+ωct∆y2)}︸ ︷︷ ︸

exp( i
h̄ py(yb−ya))=exp( i

h̄ mωOx(yb−ya))

exp
{

i
h̄

m
2

(
ω

2
cot

ωT
2
(
∆x2−∆y2))} .︸ ︷︷ ︸

KHO
Ox

(11)

This exactly corresponds to the Landau solution of the Schrödinger equation by factoring out the
cyclic variable y.

To illustrate explicitly how the present proposal works in this case, consider the time dependent
average position of a quantum particle subject to a boundary conditions

〈~x〉=
∫

d2xK(~xb,~x;T − t)~xK(~x,~xa; t)/K(~xb,~xa;T ) = xcl
xa,xb,T (t).

Since the problem is gaussian the answer is given by the corresponding classical trajectory. More-
over due to the above equivalence the following reduction formulas hold

〈x(t)〉B = 〈x(t)〉O=Ox , 〈y(t)〉B = 〈y(t)〉O=Oy ,

by which the "magnetic field averages" are expressed by the "shifted harmonic oscillator averages".
And these can be obtained from the positive representation (6) trivially modified for the case of
shifted oscillations.

In Fig.1 two classical trajectories of a charged particle in an external magnetic field are shown.
They have the same corresponding initial and final points and differ by the total time T of the
transition from~xa to~xb. Dots represent the averages calculated for the discretized problem using the
above harmonic oscillator equivalence and positive representation of the shifted harmonic oscillator
kernel. The first limit (10) has already been taken.

The fast convergence (notice the very rough discretization) to the continuum is the tribute to
the old and well known Feynman prescription. The new element however is that the averages were
obtained from the positive representation of the harmonic motion directly in the Minkowski time.
Summary and outlook.

Difficulties with stochastic solutions of the complex Langevin equations can be alleviated by
the direct construction of pairs of corresponding, complex and positive, densities. This was re-
cently done in Ref.[12] for the one degree of freedom case model thereby generalizing the existing

4



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
3
1
4

Beyond complex Langevin ... Jacek Wosiek

-2 0 2 4 6

0

2

4

6

8

<xHtL>

<yHtL>

N= 5, 7, 9; ΩT�2Π = 0.4, 0.7

Figure 1: Two exact trajectories of a particle in an external magnetic field compared with the quantum,
discretized averages obtained from the positive representation (10).

solution of the gaussian model to an arbitrary complex slope. A particular nonlinear problem with
a quartic coupling was also solved.

Subsequently the gaussian solution was generalized to many variables and used to construct
the positive representation for gaussian path integrals directly in the Minkowski time [10]. For the
infinite number of degrees of freedom existence of the continuum limit is not trivial and requires
an novel tuning of parameters.

The method is then successfully applied to the three textbook quantum mechanical problems:
a free particle, a harmonic oscillator and a particle in a constant, external magnetic field. The latter
is the simplest prototype of a Wilson loop and until now did not have a positive representation even
after the Wick rotation.

Even in the context of above simple cases, many questions remain open: how fast is the first
limit achieved in practice, how this depends on discretization, is there a more optimal way to
combine the first limit with the continuum limit, etc.

Clearly one would like to generalize the present scheme to more physical, nonlinear systems.
In particular an interesting mathematical problem arises. Namely to what extent the sum rule (2),
together with positivity and normalizability conditions, can determine P from a complex weight
ρ . The nonlinear example solved in Ref.[12] shows, that the new structure is not restricted to the
gaussian cases only.

A host of further problems and applications suggests itself: generalization to compact inte-
grals, nonlinear and nonabelian couplings, fermionic integrals, as well as extensions to the field
theory are only few examples. We are looking forward to study some of them.

Finally, an intriguing interpretation may be enjoyed. The positivity is achieved by duplicating
the number of variables. More precisely, positive Minkowski amplitudes would result if one speci-
fies initial/final values for all of these variables. On the other hand the standard, complex quantum
amplitudes emerge upon suitable integrations over half of above variables with the usual boundary
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conditions. All this resembles to some extent the celebrated history of hidden variables. At the
same time we strongly emphasize that none of the sacred principles of quantum mechanics is vi-
olated. In particular the quantum interference of standard amplitudes is not hampered in any way.
Nevertheless, some new structure has been exposed and it remains to be seen if it is of practical
interest only, or if it is more fundamental.
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