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We describe a general recipe for constructing Metropolis updates for Diagrammatic Monte-Carlo
(DiagMC) algorithms, based on the Schwinger-Dyson equations in quantum field theory. This
approach bypasses explicit duality transformations, enumeration or classification of diagrams and
can be used for lattice quantum field theories with unknown or complicated dual representations
(such as non-Abelian lattice gauge theories). DiagMC algorithms constructed in this way can still
be plagued by the sign problem, which is, however, completely different from the sign problem in
conventional Monte-Carlo simulations and has its origin in cancellations between diagrams with
positive and negative weights. To test the presented approach, we apply DiagMC to calculate
the first 7 orders of 1/N2 expansion in the quartic matrix model and find good agreement with
analytic results, with the exception of the close vicinity of the critical coupling where the critical
slowing down sets in.
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1. Introduction

Diagrammatic Monte-Carlo algorithms have turned out to be extremely useful for the first-
principle studies of quantum systems for which ordinary configuration-space Monte-Carlo simu-
lations based on the sampling of field configurations become impossible due to the sign problem.
Typically, Diagrammatic Monte-Carlo algorithms are constructed by using some explicit diagram-
matic representation of strong- or weak-coupling expansion series. One constructs certain ergodic
set of transformations on the diagram space and accepts each of the transformations in a Metropo-
lis algorithm according to the ratio of the weights of the initial and transformed diagrams [1, 2].
Explicit forms of perturbative expansions are typically easy to construct for simple condensed mat-
ter systems with on-site or static inter-electron interactions [1, 2] or for Abelian gauge theories
[3]. For non-Abelian lattice gauge theories or principal chiral models, however, both strong- and
weak-coupling expansions become quite complicated at high orders, and it is difficult to classify
and parameterize all the admissible diagrams and to calculate their weights (see [4] for some recent
work in this direction).

On the other hand, it is known that weak- or strong-coupling expansions in quantum field the-
ories can be obtained by iteratively solving the Schwinger-Dyson equations. In contrast to explicit
dual representations, Schwinger-Dyson equations are easy to derive in any QFT with continuous
field variables. E.g. for non-Abelian gauge theories these are the Migdal-Makeenko loop equations
[5]. In these Proceedings we demonstrate how a suitable set of Metropolis updates for a DiagMC
algorithm can be obtained directly from Schwinger-Dyson equations. After presenting the general
prescription in Section 2, in Section 3 we discuss the practical implementations of the algorithm.
Finally, in Section 4 we illustrate the presented approach on the example of the Schwinger-Dyson
equations in the quartic Hermitian matrix model, and test it by calculating the first 7 orders of 1/N2

expansion of the free energy. In contrast to the stochastic solution of Schwinger-Dyson equations
presented by the author in [6, 7], the algorithm presented here works even very close to the critical
coupling at which the expansions being sampled diverge (of course, exhibiting the expected critical
slow-down). Application of this algorithm to principal chiral models and non-Abelian lattice gauge
theories will be described in detail in forthcoming publications.

2. Stochastic solution of linear equations

Schwinger-Dyson equations can always be represented as infinite-dimensional linear equa-
tions on the space of field correlators φ (X) = 〈φ (x1) . . .φ (xn)〉 (which include both connected
and disconnected contributions) with all possible values of X = {x1, . . . ,xn} and n:

φ (X) = b(X)+∑
Y

A(X |Y )φ (Y ) , (2.1)

where A(X |Y ) is some theory-dependent linear operator and b(X) represents the “source” terms
in the Schwinger-Dyson equations (typically, the contact delta-function term in the lowest-order
Schwinger-Dyson equation). In Section 4 we give a particular example of such representation of
Schwinger-Dyson equations for the quartic matrix model.
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The solution φ (X) of (2.1) can be written as formal geometric series in A:

φ (X) =
+∞

∑
n=0

∑
X0

. . .∑
Xn

δ (X ,Xn)A(Xn|Xn−1) . . .A(X1|X0)b(X0) . (2.2)

In case one truncates the strong- or weak-coupling expansion at some finite order, the above series
contain only a finite number of terms, which correspond to a finite number of diagrams contributing
up to given expansion order.

We propose to evaluate the series (2.2) by stochastically sampling the sequences of variables
S = {Xn, . . . ,X0} with arbitrary n in (2.2) with probability

w(S ) = N −1
w |A(Xn|Xn−1) | . . . |A(X1|X0) ||b(X0) |. (2.3)

In order to simplify the notation in what follows, let us also define the quantities

N (Y ) = ∑
X
|A(X |Y ) |, Nb = ∑

X
|b(X) |. (2.4)

The solution φ (X) to the system (2.1) can be obtained as a histogram of the last variable Xn in
the sequence {Xn, . . . ,X0}, where each occurrence of Xn is weighted with the sign σ (Xn, . . . ,X0) =

sign(A(Xn|Xn−1)) . . .sign(A(X1|X0))sign(b(X0)). This sign reweighting puts certain limitations
on the use of the method, since we are effectively sampling the series in which the linear operator
A(X |Y ) is replaced by |A(X |Y ) | and which typically have a smaller radius of convergence. In the
worst case, the expectation value of the reweighting sign σ (Xn, . . . ,X0) can decrease exponentially
with n, thus limiting the maximal expansion order which can be sampled by the algorithm.

In order to sample the sequences S with probability (2.3), we use the Metropolis-Hastings
algorithm with the following updates:

Add element: With probability p+ add a new element Xn+1 to the sequence {Xn, . . . ,X0}, where
the probability distribution of Xn+1 is π (Xn+1|Xn) = |A(Xn+1|Xn) |/N (Xn). Multiply the
sign variable σ by sign(A(Xn+1|Xn)).

Remove element: If the sequence contains more than one element, with probability 1− p+ remove
the last element Xn, thus transforming the sequence {Xn,Xn−1, . . . ,X0} into {Xn−1, . . . ,X0}.
Multiply the sign variable σ by sign(A(Xn|Xn−1)).

Restart: If the sequence contains only one element X0, replace it by X ′0 with probability 1− p+.
The probability distribution of X ′0 is π (X ′0) = |b(X ′0) |/Nb. Set the sign variable σ to
sign(b(X ′0)).

Since for the above updates the detailed balance condition π (S ′→S ) = π (S →S ′) for transi-
tion probabilities between the sequences S and S ′ is in general not satisfied, they should be then
accepted or rejected with the probability α (S →S ′) = min

(
1, w(S ′)π(S ′→S )

w(S )π(S→S ′)

)
[8]. For the three

updates defined above we find the following acceptance probabilities:

αadd =
N (Xn)(1− p+)

p+
, αremove =

p+
N (Xn−1)(1− p+)

, αrestart = 1. (2.5)
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After some algebra one can express the overall acceptance rate as α =

2〈min(p+,(1− p+)N (Xn))〉+ (1− p+) Nb
Nw

. In order to reach the optimal performance of
the algorithm with acceptance close to unity, one can start the simulations with some initial value
of p+, calculate the expectation values 〈min

(
p′+,
(
1− p′+

)
N (Xn)

)
〉 for several trial values p′+

and then select the value which maximizes the acceptance.
It is also useful to calculate the normalization factor Nw which relates the (sign weighted)

histogram of the last element Xn in the sequences S = {Xn, . . . ,X0} and the actual solution
φ (X) of the system (2.1). From (2.3) and (2.1) one can obtain a linear equation for Nw:
Nw = Nw ∑

X
w(X) = Nw ∑

X ,Y
|A(X |Y ) |w(Y ) +∑

X
|b(X) | = Nw ∑

Y
N (Y )w(Y ) +Nb, where w(X)

is the probability distribution of the last element Xn in the sequences S , with any sign σ . From the
above equation we can finally express Nw as

Nw =
Nb

1−〈N (Xn)〉
. (2.6)

3. Practical implementation of the stochastic solution of Schwinger-Dyson equations

Typically, for Schwinger-Dyson equations of the general form (2.1) the coefficients b(X) and
A(X |Y ) are different from zero for only a few values of X and Y . Moreover, the space of X variables
is in most cases infinite. Therefore it is not possible but also not necessary to store b and A entirely
in computer memory. Rather, it is convenient to implement them as a user defined functions which
return only nonzero values of b(X0) and A(Xn+1|Xn) for a given Xn. Given all nonzero values
of A(Xn+1|Xn), the algorithm should calculate N (Xn) and the acceptance probability αadd for
the Add index transition. The calculated values N (Xn) can be stored as an ordered sequence
{N (Xn) ,N (Xn−1) , . . . ,N (X0)} (which, in fact, has the stack structure). Since at each step of
the random process either a new element Xn+1 is attached to the sequence or the last element Xn is
removed, and all other elements are not changed, one can re-use the previously calculated values of
N (Xn−1) for the calculation of the acceptance probability αremove of the Remove index transition.

Let us now turn to the optimal practical way of saving the sequences S = {Xn, . . . ,X0}. In
practice, the variables X are themselves the sequences of some variables (e.g. lattice coordinates
or momenta), and saving them entirely in computer memory is quite impractical. Let us note,
however, that for a given sequence the next proposed element Xn+1 only depends on Xn. Moreover,
as a consequence of the sparseness of the coefficients b(X) and A(X |Y ), only a rather small set of
new elements Xn+1 might be proposed for a given Xn. Thus in practice it is possible to enumerate
all possible updates for a given set of Schwinger-Dyson equations and characterize them by some
small set of parameters (in most cases, only a few integer or real numbers). Instead of keeping the
whole sequence {Xn, . . . ,X0} in memory, one can store only the topmost element Xn as well as the
history of updates X0→ X1, . . . ,Xn−1→ Xn which led to a given sequence. If the Remove index is
proposed and accepted by the algorithm, the last update should be “undone”.

Sometimes it can be also useful to graphically interpret different terms in the Schwinger-Dyson
equations as some transformations on the external legs of the diagrams being sampled. The Monte-
Carlo process described above can be then thought of as a graphical editor for diagram drawing
which has several commands for updating the diagrams, such as drawing a line or a vertex. At each
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Monte-Carlo step one either chooses a random update command with some probability, or undoes
the previous update. It is clear then that the state of the algorithm can be completely described by
the current diagram and the history of commands which were used to draw it.

4. Test case: high orders of 1/N expansion for the φ 4 matrix model

In this Section we test the DiagMC algorithm described above on the simplest example of the
quartic Hermitian matrix model, which is specified by the partition function

Z (λ ) =
∫

Dφ exp
(
−N

2
Trφ

2 +
λN
4

Trφ
4
)
, (4.1)

where we integrate over N×N Hermitian matrices φ . A full set of linear Schwinger-Dyson equa-
tions of the form (2.1) for this model can be written in terms of the multi-trace expectation values
expanded into power series in 1/N2:

G(n1, . . . ,nm) = 〈
1
N

Trφ
2n1 . . .

1
N

Trφ
2nm 〉=

+∞

∑
g=0

1
N2g Gg (n1, . . . ,nm) . (4.2)

The Schwinger-Dyson equations can be derived in the conventional way by expanding the full
derivative in the path integral, and take the following form:

Gg (2) = δg,0 +λGg (4) , Gg (1,1) = δg,1 +λGg (3,1) , (4.3)

Gg (1,n2, . . . ,nm) =
m

∑
k=2

δnk,1Gg−1 (n2, . . . ,nk−1,nk+1, . . .nm)+λGg (3,n2, . . . ,nm)+

+
m

∑
k=2

nk (1−δnk,1)Gg−1 (n2, . . . ,nk−1,nk−1,nk+1, . . . ,nm) , (4.4)

Gg (n1, . . . ,nm) = 2Gg (n1−2,n2, . . . ,nm)+

+
n1−2

∑
a=1

Gg (a,n1−2−a,n2, . . . ,nm)+λGg (n1 +2,n2, . . . ,nm)+

+
m

∑
k=2

nkGg−1 (n2, . . . ,nk−1,nk +n1−2,nk+1, . . . ,nm) , n1 > 1. (4.5)

Correspondingly, the states of our DiagMC algorithm (variables X in the notation of the previous
Sections) can be described by sequences of positive integers {n1, . . . ,nm}g of any length m, labelled
by the variable g ≥ 0 (which has a geometric interpretation in terms of diagram genus). Note that
for positive λ all the terms on the right-hand side of equations (4.3), (4.4) and (4.5) are positive,
thus no sign reweighting is necessary.

A subtle point in the implementation of Diagrammatic Monte-Carlo for the Schwinger-Dyson
equations (4.3)-(4.4) is that the quantities Gg (n1, . . . ,nm) are not normalizable due to factorial
growth of the number of contributing diagrams with the genus g and hence cannot be directly
interpreted as statistical weights. On the other hand, at fixed g the number of contributing diagrams
grows only exponentially with the number of vertices and external legs. For fixed {n1, . . . ,nm} this
growth is compensated by the powers of the coupling λ if λ is smaller than the critical value λc =

1/12. To deal with the growth of Gg (n1, . . . ,nm) at large g, n and m we assume that Gg (n1, . . . ,nm)
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are proportional to the probability wg (n1, . . . ,nm) to find the state {n1, . . . ,nm}g in the Monte-Carlo
process times the normalization factor (2g)!ηmκn1+...+nm which compensates for this growth. After
such a redefinition of variables, we can directly identify the Metropolis updates and their weights
from the Schwinger-Dyson equations (4.3), (4.4) and (4.5):

Create single trace: {n1, . . . ,nm}g→{2,n1,n2, . . . ,nm}g, weight A(X |Y ) =
(
κ2η

)−1.

Create two traces: {n1, . . . ,nm}g→{1,n1,n2, . . . ,nk−1,1,nk, . . . ,nm}g+1, k takes random value in

the range 2 . . .m+ 1, weight A(X |Y ) = (m+1)
(2g+2)(2g+1)

1
η2κ2 . The genus g is increased by one.

To “undo” this update, one should store in memory the position k at which the second trace
was inserted.

Insert line: {n1, . . . ,nm}g→{n1 +2,n2, . . . ,nm}g, weight A(X |Y ) = 2/κ2.

Merge two traces: {n1, . . . ,nm}g → {n1 +n2 +2,n3, . . . ,nm}g, weight A(X |Y ) = η/κ2. To
“undo” this update, one should store in memory either n1 or n2.

Create vertex: {n1, . . . ,nm}g→{n1−2,n2, . . . ,nm}g, weight A(X |Y ) = λκ2.

Split single trace: {n1, . . . ,nm}g → {a,n1, . . . ,nk−1,nk +2−a,nk+1, . . . ,nm}g+1, k takes random
value in the range 1 . . .m, a takes random value in the range 1 . . .nk + 1, the genus g is

increased by one, weight A(X |Y ) =
m
∑

k=1
(nk+1)(nk+2)

(2g+2)(2g+1)ηκ2 . To “undo” this update, one should store
in memory the position k of the trace which is being split.

The initial states of the algorithm are either {2}0 or {1,1}1 with probabilities being proportional
to (ηκ)−1 and

(
2η2κ2

)−1, corresponding to the first terms in the right-hand sides of equations
(4.3). These Metropolis updates provide a stochastic implementation of the so-called topological
recursion [9] for the matrix model (4.1).
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Figure 1: Comparison of the coefficients of the 1/N2 expansion of the expectation value G4 = 〈 1
N Trφ 4 〉

in the φ 4 matrix model (4.1) obtained from the DiagMC simulation (data points with error bars) with exact
analytic results [10] (solid lines).

In order to test the performance of our Diagrammatic Monte-Carlo algorithm, we consider the
expectation values Gg (4) which can be directly related to the 1/N expansion of the free energy in
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the matrix model (4.1):

− 4
N2

∂

∂λ
logZ = 〈 1

N
Trφ

4 〉=
+∞

∑
g=0

1
N2g Gg (4) . (4.6)

On Fig. 1 we compare the results for the coefficients Gg (4) obtained in the above described Di-
agMC algorithm with the analytic results obtained in [10]. Each data point was obtained by aver-
aging over 2 · 109 Metropolis updates, which took several hours on a single CPU core. While the
absolute value of Gg (4) spans almost 30 orders of magnitude for λ ∈ [0 . . .λc] and g = 0 . . .6 (see
left plot on Fig. 1), the ratios between the outcome of Monte-Carlo sampling and analytic results
are equal to one within statistical errors (see right plot on Fig. 1), except for the data points at
higher genera g and the values of λ close to λc, for which the Monte-Carlo data is significantly
smaller than the exact result. Analysis of the histograms of Gg (4) for these data points suggests
that the origin of under-sampling lies in the heavy-tailed distribution of observables, for which the
expectation value should be saturated by rare extreme values. The required increase of statistics re-
flects the critical slowing down of the algorithm near the critical value λ = λc, where the geometric
series (2.2) are at the edge of convergence.
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