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1. Introduction

The two dimensional CP(N−1) model is a toy model of QCD since they have a lot in common;
for example, they are asymptotic free theory and include the θ term. In QCD, the difficulty in
understanding why the value of θ is so small is one of the remaining puzzles, which is called the
strong CP problem. While solving this problem in QCD is significant, analyzing the CP(N − 1)
model in the presence of the θ term is meaningful too.

In the lattice CP(N −1) model, an interesting scenario that θ becomes zero was proposed by
Schierholz in Ref. [1]. He analyzed the phase diagram of the CP(N −1) model in the β -θ plane as
shown in Fig. 1. In the phase diagram, a phase transition from confining phase to deconfinement
phase was found and he suggested that if θ = 0 is the only point in the confining phase at which
the continuum limit can be taken, this would resolve the strong CP problem. However, other
researches, in which the similar phase diagram was investigated by similar way as Schierholz,
indicated that the deconfinement phase boundary may appear due to the statistical errors in their
Monte Carlo-based method [2, 3]. On the other hand, the strong coupling analysis of the phase
diagram supported Schierholz’s scenario [4]. Figure 2 shows the phase structure of the CP(1)
model which we analyze according to their strong coupling method. In the large β region, the
deconfinement phase appears while the strong coupling analysis is not appropriate for the weak
coupling region.

Figure 1: The phase diagram of the CP(N −1) model proposed by Schierholtz. If the deconfinement phase
exists and θ = 0 is the only choice of the confining phase in the continuum limit, then the strong CP problem
in the CP(N −1) model would be resolved.

More recently, Azcoiti et al. [5] focused on the fact that the CP(1) model is equivalent to the
O(3) model. In the O(3) model, there is a conjecture formed by Haldane which insists that the
O(3) model with θ = π is gapless, that is, presents a second-order phase transition [6, 7]. They
investigated whether the same is true or not in the CP(1) model using the Monte Carlo simulation
and found that there is a first-order phase transition line for β < 0.5 at θ = π , and there is a second-
order phase transition line for 0.5 < β . The order of the phase transition changes around β = 0.5,
but they could not identify the location of the point with a high accuracy.

In general, the Monte Carlo method has a difficulty in analyzing systems including the θ term
due to the sign problem. Therefore it is important to reanalyze the previous results described above
by using sign-problem-free methods. The tensor renormalization group (TRG) [8] method is one
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Figure 2: The phase diagram of the CP(1) model by using the strong coupling analysis [4]. The deconfine-
ment phase appears and supports Schierholz’s scenario.

of such methods. Thus, we apply this method to the CP(N − 1) model including the θ term and
investigate the phase structure.

In our previous study, a tensor network representation of the CP(N−1) model including the θ
term was derived and we applyed the TRG method to the CP(1) model without the θ term [9]. In
this report, we analyze the phase structure with the θ term and show the numerical results.

2. Tensor network representation of the CP(N −1) model including the θ term

In order to apply the TRG method to the CP(N − 1) model, we need a tensor network repre-
sentation of the partition function. The details of the tensor is given in Ref. [9] . Here we only
mention the structure of the tensor. The dominant term of each elements are as follows.

Figure 3: Tensor of the CP(N −1) model. Each bond has four kinds of indices.

Tstuv ≡T((ls;ms),{a},sp)((lt ;mt),{b},tp)((lu;mu),{c},up)((lv;mv),{d},vp)

∝
√

IN−1+ls+ms(2Nβ )×
2sin θ+2πsp

2
θ +2πsp

. (2.1)
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Focusing on the first bond, there are four kinds of indices, ls, ms, {a}, and sp, which are ex-
pressed as the red indices in Fig. 3. The indices ls and ms are non-negative integers, {a} consists of
{a1,a2, · · · ,als+ms} where an = 1, · · · ,N, and sp is an integer. The same is true of the other bonds.
As the ranges of some of these indices are infinite, one has to truncate the bond dimensions for
numerical calculations. The first factor of Eq. (2.1), In(x), is the modified Bessel function of the
first kind. One can safely truncate ls and ms since the modified Bessel functions of the first kind
decrease rapidly as the indices, ls and ms, increase. We set the maximum of ls +ms to k. Table 1
shows how ls and ms run and dimension of {a} for each set of (ls;ms).

Table 1: Values of ls, ms and dimension of {a}.
ls ms dim. of {a}
0 0 1
1 0 N
0 1 N
2 0 N2

1 1 N2

0 2 N2

...

When the maximum of ls +ms is truncated at k, the total dimensions of ls
⊗

ms
⊗
{a}, which we

call Dβ , is

Dβ =
1− (2+ k)Nk+1 +(1+ k)Nk+2

(1−N)2 . (2.2)

Especially when N = 2, Dβ = 1+ k ·2k+1. Similarly, one can truncate the dimension of sp at large
|sp| due to the form of the second factor of Eq. (2.1). We truncate the dimension of sp to Dθ . We
use the truncated tensor for the initial tensor of the TRG method.

3. Numerical results

The TRG method makes it possible to calculate the partition function Z approximately once
the tensor network representation is obtained. The systematic errors can be controlled by adjusting
the bond dimensions of the tensor. This truncation is justified by the hierarchy of the singular
values of the tensors. We set the bond dimension to Dβ ×Dθ . And in this report, we focus on the
case N = 2.

First, we compare the result of the TRG method with that of the strong coupling analysis.
Figure 4 shows the numerical results of the free energy density F of the CP(1) model at β = 0.2.
The strong coupling analysis is expected to work well in small β region and these two results are
almost consistent at this β . As the value of β grows, however, these two results gradually become
different from one another. As can be seen from the results, there seems to be a phase transition at
θ = π where the CP symmetry is spontaneously broken [10].
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Figure 4: The free energy density F of the CP(1) model at β = 0.2. The solid line indicates the result of
the strong coupling analysis and the cross marks indicate that of the TRG method. In the TRG method, the
linear lattice size is L = 220 and the bond dimension of the tensor is Dβ ×Dθ = 5×3.

By differentiating twice the free energy density F with respect to θ , one can calculate the
topological susceptibility,

χ =
1
L2

∂ 2

∂θ 2 logZ(θ). (3.1)

We take the derivative with respect to θ numerically in the TRG method. Figure 5 shows the
volume dependence of the topological susceptibility obtained from the TRG method.

The order of the phase transition can be verified by the volume dependence of the peak values
of the susceptibility, χmax, which is described by

χmax ∝ L
γ
ν . (3.2)

The exponent γ/ν equals 2 for first-order phase transitions while γ and ν are the conventional
critical exponents for second-order phase transitions with γ/ν < 2. The result at β = 0.2 is shown
in Fig. 6. In this range of Dβ and Dθ , the fitting analysis indicates that the phase transition is first
order and there is almost no dependence of truncations.

We also calculate the exponents at different β s as shown in Fig. 7. This figure shows that the
truncation dependences are small in the region β ≤ 0.3, while it tends to be larger in the region
0.4 ≤ β . Therefore we have to investigate the latter region with higher accuracy. For that pur-
pose, one can increase the bond dimensions. However it is not reasonable because it is expected
that a second-order phase transition line exists from β ∼ 0.5 [5]. Generally, the TRG method
does not work well especially in critical region. For the analysis of critical region, a new tensor
network method has already been developed, which is called the tensor network renormalization
(TNR) [11]. It is worthwhile to apply this method to the critical region.
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Figure 5: The volume dependence of the topological susceptibility at β = 0.2. The bond dimension of the
tensor is Dβ ×Dθ = 5×3. The linear lattice size is L = 4, 8, 16 and 32.
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Figure 6: The volume dependence of χmax at β = 0.2. There is almost no truncation dependence. The slope
of the fit line for Dβ = 17 and Dθ = 3 is 2.003±0.031 and indicates a first-order phase transition.

4. Summary

We analyze the phase structure of the CP(1) model including the θ term by using the TRG
method and reconfirm that the order of the phase transition at θ = π is first order until β = 0.3.
The truncation dependence of the topological susceptibility arises for 0.4 ≤ β . For our future work,
we shall try the TNR method in the large β region.
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Figure 7: Truncation dependence of the exponent γ/ν . For β ≤ 0.3, the truncation dependences are small
and it indicates first-order phase transitions. For 0.4 ≤ β , the truncation dependences are large.
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