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Search for a continuum limit of the PMS phase
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Previous studies of a simple four-fermion model with staggered fermions in 3D have shown the
existence of an exotic quantum critical point, where one may be able to define a continuum limit
of the Paramagnetic Strong Phase (or the PMS phase). We believe the existence of the critical
point suggests a new mechanism for generating fermion masses. In this work we begin the search
for this quantum critical point in 4D by extending the 3D model to 4D. Unlike in 3D, now we do
find evidence for an intermediate spontaneously broken phase (FM phase) and are able compute
the phase boundaries accurately. In terms of the bare coupling, the width of the intermediate
region appears to be quite small.
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1. Introduction

Lattice field theory models with four-fermion interactions often exhibit interesting phases sep-
arated by quantum critical points. Previous studies [1, 2, 3, 4] of lattice Yukawa and four-fermion
models have shown very interesting phase structures. Some of these models have shown the ex-
istence of an exotic symmetric phase at strong couplings called the Paramagnetic Strong phase or
PMS phase, where fermions are massive without the formation of any bilinear condensates.

The conventional mechanism for fermion mass generation (which is realized in the strong
sector of the Standard Model), involves the Spontaneous Symmetry Breaking (SSB) of chiral sym-
metries. This is signalled by a non-zero fermion bilinear condensate. In contrast, in lattice models
with this exotic PMS phase, lattice fermions are massive without the formation of any fermion
bilinear condensates. Hence, the existence of a continuum limit of this PMS phase would imply
the existence of a new mechanism for fermion mass generation without any SSB. In our previous
work [6], using a lattice four-fermion field theory model in 3 Euclidean dimensions, we showed
the existence of a continuum limit of this PMS phase. This has been confirmed by other groups
[7, 8, 9]. In this work, we look for a similar continuum limit of the PMS phase using the same
model in 4 Euclidean dimensions. A detailed account of this study can be found in [10].

2. Motivation

Lattice Yukawa models were studied extensively in the late 1980’s and early 1990’s. These
studies revealed a very interesting phase structure. Most models showed two phases with a sym-
metric massless fermion phase at weak couplings, called the Weak paramagnetic phase (PMW
phase) and a spontaneously broken massive fermion phase at intermediate couplings, called the
Ferromagnetic phase (FM phase). However, some models showed another symmetric phase at
strong couplings called the Strong paramagnetic phase (PMS phase). This general phase diagram
is shown in Fig. 1.
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Figure 1: The generic phase diagram for some Yukawa models with scalar mass parameter m and coupling
g. It shows the Strong Paramagnetic phase (PMS) phase in addition to the Weak Paramagnetic phase (PMW)
and the Ferromagnetic phase (FM).
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Figure 2: The expected phase diagram for four-
fermion models with the strong paramagnetic
phase (PMS) at strong couplings.

U=0 Uc1 ∞

Symmetric 
massless 
(PMW)

Symmetric 
massive 
(PMS)

Figure 3: The phase diagram for our four-fermion
model with a single second order PMW-PMS
phase transition found in 3D.

What makes the PMS phase interesting is that fermions in this phase acquire a mass with-
out the formation of any fermion bilinear condensates. Hence, lattice models containing a PMS
phase are interesting in their own right. Existence of a continuum limit of the PMS phase would
be very interesting in particle physics since this would provide a new mechanism for fermion mass
generation without Spontaneous Symmetry Breaking. However, since Yukawa models are com-
putationally more expensive due the presence of scalar fields coupling to the fermions, previous
studies [5] could only be performed on very small lattice sizes. It can be argued that a four-fermion
model can capture the same physics as these Yukawa models, along a horizontal line with κ = 0.
Hence for such a four-fermion model, one expects a phase diagram given in Fig. 2. Since four-
fermion models are easier to study due to techniques like the Fermion Bag approach [11], in this
work, we study such a four-fermion model.

If we find the intermediate FM phase to be absent and the PMW-PMS phase transition to be
second-order, then this would imply the existence of a continuum limit of the PMS phase. Such
a continuum theory would exhibit fermion mass generation without any Spontaneous Symmetry
Breaking. In our previous study in 3D, we did find such a 2nd order critical point. This scenario is
depicted in Figure 3. In this work, we look for such a critical point in 4D.

3. Our Model

We study four flavors of massless reduced staggered fermions, interacting via an on-site four-
fermion interaction term. This is equivalent to two flavors of reduced staggered fermions as de-
scribed before [12]. The action for our model is given by

S = S0−U ∑
x
(ψx,1ψx,2ψx,3ψx,4) , (3.1)

where S0 is the free reduced staggered action and is given by

S0 =
1
2

4

∑
i=1

∑
x,y

ψx,iMx,yψy,i. (3.2)
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Here, ψx,i, i = 1,2,3,4 are four independent Grassmann valued fields that represent the four flavors
of reduced staggered fermions, x represents the sites of a hypercubic lattice, and M is the well-
known free staggered fermion matrix.

In addition to the usual discrete space-time symmetries, the action also has an SU(4) flavor
symmetry. In this work, we explore the order parameter ψx,aψx,b that breaks the SU(4) symmetry.
The observables we measure are:

ρm =
U
V ∑

x
〈ψx,1ψx,2ψx,3ψx,4〉,

χ1 =
1
2 ∑

x
〈ψ0,1ψ0,2ψx,1ψx,2〉,

χ2 =
1
2 ∑

x
〈ψ0,1ψ0,2ψx,3ψx,4〉, (3.3)

where ρm is a four-point condensate, while χ1 and χ2 are the two susceptibilities corresponding to
the order parameter ψx,aψx,b. If the SU(4) symmetry is broken spontaneously, then a condensate Φ

forms, and hence the susceptibilities will scale with the volume i.e χ1,2 ∼Φ2L4.

4. Computational Approach

The conventional approach to solve such four-fermion models is by introducing a scalar auxil-
iary field and converting it to a bosonic problem. In this work, we use an alternate approach called
the Fermion Bag approach [11]. This method deals directly with the fermionic degrees of freedom.
It can be applied to a certain class of fermionic models and it has been found to be very efficient in
solving these models. Application of the Fermion Bag approach to our model has been described
in detail in [10].

Our aim is to explore the phase diagram of this model. At weak couplings, since the four-
fermion coupling U is irrelevant, we expect massless fermions. At strong couplings, it can be ar-
gued using the fermion bag approach [13] that all two point correlations must decay exponentially.
Hence, we expect massive fermions without any fermion bilinear condensates (PMS phase). We
would like to know whether there exists an intermediate spontaneously broken phase (FM phase)
at intermediate couplings.

5. Results

We performed calculations on symmetrical lattices upto size 124 with anti-periodic boundary
conditions in all directions. The behavior of the observable ρm as a function of the coupling U for
various lattice sizes L is shown in Fig. 4. Being a four-point condensate, any discontinuity in ρm

can be a sign of a first-order phase transition. The smooth nature of ρm seen in Fig. 4 seems to hint
at the absence of any first-order transitions.

To explore the phase diagram further, we look at the behavior of the susceptibilities. Fig. 5
shows the behavior of χ1 as a function of the coupling U . It can be seen that the susceptibility χ1

increases with U , reaches a maximum at intermediate U and then decreases at large U . It is clear
that at intermediate couplings, χ1 increases sharply with lattice size L.
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Figure 4: Variation of the four-point condensate
ρm with coupling U . ρm increases with coupling
U , rising sharply near U = 1.75, without showing
any discontinuities.
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Figure 5: Variation of the susceptibility χ1 with
coupling U for various lattice sizes. χ1 increases
with U to reach a maximum for intermediate U
and then decreases.
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Figure 6: The saturation of χ1/L4 as lattice size
L increases for various intermediate couplings.
This implies the formation of a fermion bilinear
condensate at intermediate U .
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Figure 7: Plot of the condensate forming in the
intermediate region from U = 1.60 to 1.80. This
is the FM phase.

As discussed before, for the existence of fermion bilinear condensates, the susceptibility must
grow with the volume L4. To check the presence of a condensate in the intermediate region, we
look at the variation of χ1/L4 as a function of L for some intermediate couplings in Fig. 6. It can
be seen that the curve saturates as L increases. This implies that the susceptibility χ1 grows as
L4 in the intermediate region and hence fermion bilinear condensates form there. To extract the
condensate Φ, we performed a fit of χ1 to the form χ1 = 1

4 Φ2L4 + 1
2 b1L2. The variation of this

condensate Φ with coupling U is shown in Fig. 7. It is clear that the condensate forms in the
intermediate region between U = 1.60 and U = 1.80. A similar analysis with the susceptibility χ2

gives the same results.

The presence of an intermediate FM phase implies the existence of two phase transitions: a
PMW-FM and an FM-PMS transition. We would like to understand the nature of these phase
transitions. From the theory of second-order phase transitions, we know that χ ∼ L2−η near a
second order critical point. Making an ansatz that these two transitions are second-order with
mean-field exponents η = 0 and ν = 0.5, we plot χ1/L2−η as a function of coupling U in Fig. 8.
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Figure 8: The curves χ1/L2−η vs U with the mean field value of η = 0 for various lattice sizes L intersect at
two points, Uc1 = 1.60 and Uc2 = 1.80. This implies that the PMW-FM and FM-PMS transitions are second
order with mean field exponents.

The curves intersect at the two points Uc1 = 1.60 and Uc2 = 1.80. This confirms our suspicion that
the two transitions are both second-order with the mean field exponents.

6. Conclusions

Thus, our study of a four-fermion lattice model with 4 flavors of reduced staggered fermions
in 4 Euclidean dimensions shows the presence of a 3 phase structure, with a Ferromagnetic (FM)
phase at intermediate couplings sandwiched by a weak Paramagnetic (PMW) phase at weak cou-
plings, a strong Paramagnetic (PMS) phase at strong couplings. In the PMS phase, the fermions
are massive without the formation of any fermion bilinear condensates. Our analysis shows that
the two transitions are both second-order with mean field exponents η = 0 and ν = 0.5.

Even though the presence of the intermediate FM phase makes this model less interesting, the
presence of the PMS phase is interesting in its own right. The actual mode for fermions to acquire a
mass in this PMS phase is not clear. One possibility is that the fermions may be acquiring a mass via
the formation of four-fermion condensates. At strong couplings, non-perturbative dynamics could
result in three fundamental fermions forming a bound state to give a composite fermion. This
composite fermion could couple to a fundamental fermion, and such a mass term would resemble a
four-fermion condensate in microscopic theory. This possibility has been proposed before [14, 15].

While the presence of the intermediate FM phase precludes the existence of a PMW-PMS
second order phase transition in this model in 4D, the width of this FM phase is found to be quite
small. This raises an interesting possibility: it might be possible to eliminate this phase in an
enhanced coupling space by tuning the couplings. We intend to explore this possibility in future
work by adding higher order terms.
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