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1. Introduction

Monte Carlo simulation cannot be simply applied to systems whose Boltzmann weight is com-
plex, for example, finite density fermion systems or θ term included systems, known as the com-
plex action problem (the sign problem). One of possibilities to avoid the sign problem is to use the
tensor renormalization group (TRG) [1] whose algorithm is applicable regardless of whether the
Boltzmann weight is complex or not.

What the TRG can compute is, for instance, a partition function of classical statistical systems
or that in the path integral representation of quantum field theory. The first step of TRG is to rep-
resent a partition function of a system in terms of tensor networks. After this step, the partition
function can be expressed by contraction of a bunch of tensors. The second step is to perform a
coarse-graining of the tensor network by using the singular value decomposition to preserve im-
portant information of the system while keeping an efficiency of the calculation. By repeating the
coarse-graining, one can gradually reduce the number of tensors and then it is feasible to perform
the full contraction of a few renormalized tensors, and finally one can obtain the partition function
approximately. Although the original idea of TRG introduced by Levin and Nave [1] was lim-
ited to two dimensional systems, a new coarse-graining method suited for any higher dimensional
system was proposed in Ref. [2]. The new method is based on the higher order singular value
decomposition, thus it is called higher order tensor renormalization group (HOTRG).

Our ultimate goal is to apply the idea of TRG approach to lattice QCD which is a relativistic
four dimensional non-Abelian gauge theory coupled with the quark fields. The tensor network rep-
resentation of non-Abelian gauge theories was already attempted in Ref. [3] and the HOTRG for
boson systems was already done. Thus, the final missing piece to achieve the goal is a treatment of
fermions in higher dimensions. In this report, we will formulate HOTRG for fermions in higher di-
mensional systems, we call this Grassmann higher order tensor renormalization group (GHOTRG).
As a concrete example, we will provide a detail of GHOTRG in two dimensions.

2. Grassmann higher order tensor renormalization group

In this section, after introducing the model and the notation, we briefly review the HOTRG for
bosonic tensors. Then we explain the essence of GHOTRG in two dimensional systems. Lattice
units a = 1 are assumed in the following.

2.1 Model and notation in two dimensional systems

Following the prescription described in Refs. [4, 5], one can obtain the tensor network repre-
sentation of the partition function of relativistic fermions on a lattice

Z =
∫

DψDψ̄e−∑n Ln

= Tr
{x,t}

∫
∏

n
Txntnxn−1̂tn−2̂

, (2.1)

where n is the lattice coordinate, the fermion fields ψ , ψ̄ are two-component spinors, and m and
µ denote the mass and the chemical potential respectively. The tensor T , an elementary building
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block of the tensor network, is defined as

Txntnxn−1̂tn−2̂
= Txntnxn−1̂tn−2̂

dη̄xn,2
n,2 dηxn,1

n,1 dξ̄ tn,2
n,2 dξ tn,1

n,1 dη
xn−1̂,2
n,2 dη̄

xn−1̂,1
n,1 dξ

tn−2̂,2
n,2 dξ̄

tn−2̂,1
n,1

·
(

η̄n+1̂,1ηn,1

)xn,1
(

η̄n,2ηn+1̂,2

)xn,2
(

ξ̄n+2̂,1ξn,1

)tn,1 (
ξ̄n,2ξn+2̂,2

)tn,2
, (2.2)

where the original fermion fields ψ , ψ̄ have been already integrated out, instead the another set of
Grassmann variables ηn,i, η̄n,i ξn,i and ξ̄n,i (i = 1,2) have been introduced and they satisfy∫

dηn,iηn,i =
∫

dη̄n,iη̄n,i =
∫

dξn,iξn,i =
∫

dξ̄n,iξ̄n,i = 1, for i = 1,2. (2.3)

The graphical expression of the tensor is given in Fig. 1 (left) together with the index assignment.
In Eq. (2.2), Txntnxn−1̂tn−2̂

is a normal tensor whose components are just numbers and explicitly given
in Refs. [4, 5] for two types of interaction, the Schwinger model and the Nf = 1 Gross–Neveu
model (the Thirring model) in two dimensions. We call Txntnxn−1̂tn−2̂

bosonic tensor and the rest of
T composed of the Grassmann variables

dη̄xn,2
n,2 dηxn,1

n,1 dξ̄ tn,2
n,2 dξ tn,1

n,1 dη
xn−1̂,2
n,2 dη̄

xn−1̂,1
n,1 dξ

tn−2̂,2
n,2 dξ̄

tn−2̂,1
n,1

·
(

η̄n+1̂,1ηn,1

)xn,1
(

η̄n,2ηn+1̂,2

)xn,2
(

ξ̄n+2̂,1ξn,1

)tn,1 (
ξ̄n,2ξn+2̂,2

)tn,2
(2.4)

is called Grassmann part. Note that the indices in LHS of Eq. (2.2) should be read as xn =(xn,1,xn,2)

and tn = (tn,1, tn,2), reflecting the fact that the original Grassmann variable ψ has two components.
Each index runs from 0 to 1, thus the tensor

Txntnxn−1̂tn−2̂
= T(xn,1,xn,2)(tn,1,tn,2)(xn−1̂,1,xn−1̂,2)(tn−2̂,1,tn−2̂,2)

(2.5)

has 22×4 elements at the initial stage.
In the following we discuss the renormalization procedure for the bosonic tensor and the Grass-

mann part separately.

2.2 Normal HOTRG procedure for bosonic tensors

In this subsection, let us see the renormalization of bosonic tensors, especially focus on the
coarse-graining along the 1̂-direction. This is a brief review of the normal HOTRG [2].

First we consider a new tensor M by contracting two bosonic tensors placed next to each other
along the 1̂-direction (see Fig. 1)

Mxn+1̂t+n xn−1̂t−n = ∑
xn

Txntnxn−1̂tn−2̂
Txn+1̂tn+1̂xntn+1̂−2̂

, (2.6)

where the integrated indices are defined as

t+n = tn ⊗ tn+1̂, t−n = tn−2̂ ⊗ tn+1̂−2̂. (2.7)

And then one defines M+ and M− as

M±
t±n ,t±n

′ = ∑
xn+1̂,xn−1̂,t

∓
n

M′
(t±n ),(xn+1̂xn−1̂t∓n )

M′†
(xn+1̂xn−1̂t∓n ),(t±n

′)
, (2.8)
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with

M′
(t±n ),(xn+1̂xn−1̂t∓n )

= Mxn+1̂t+n xn−1̂t−n . (2.9)

Next we apply the eigenvalue decomposition to M+ and obtain a unitary matrix U+ and the eigen-
values λ+:

M+

t+n ,t+n
′ = ∑

tn∗,b

U+
t+n ,tn∗ ,b

λ+
tn∗ ,bU

+†
tn∗ ,b,t

+
n
′ , (2.10)

where the new index tn∗,b is regarded as the second component of the index of the new tensor T new,
as it will be clear soon. Similarly one can make U− and λ− from M− and then we define ε+ and
ε− as

ε± = ∑
i>Dcut

λ±
i , (2.11)

with a given Dcut which one can choose. They indicate an amount of truncation error and are used
to select the unitary matrix which maintains better precision, say if ε+ < ε− then U+ is adopted in
the next step and vice versa. Now one obtains the new bosonic tensor by using the selected unitary
matrix (denoted by U) and restricting the new indices 1 ≤ tn∗,b, tn∗−2̂,b ≤ Dcut (see Fig. 1),

T new
xn+1̂tn∗ ,bxn−1̂tn∗−2̂,b

=
all

∑
i, j

U∗
itn∗ ,bMxn+1̂ixn−1̂ jU jtn∗−2̂,b

. (2.12)

Figure 1: Coarse-graining along the 1̂-direction.

2.3 Coarse-graining of the Grassmann part

Next we explain the coarse-graining of the Grassmann part. Along the 1̂-direction, the product
of the Grassmann part of Txntnxn−1̂tn−2̂

dη̄xn,2
n,2 dηxn,1

n,1 dξ̄ tn,2
n,2 dξ tn,1

n,1 dη
xn−1̂,2
n,2 dη̄

xn−1̂,1
n,1 dξ

tn−2̂,2
n,2 dξ̄

tn−2̂,1
n,1

·
(

η̄n+1̂,1ηn,1

)xn,1
(

η̄n,2ηn+1̂,2

)xn,2
(

ξ̄n+2̂,1ξn,1

)tn,1 (
ξ̄n,2ξn+2̂,2

)tn,2
(2.2)
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and that of Txn+1̂tn+1̂xntn+1̂−2̂
which is located next to Txntnxn−1̂tn−2̂

dη̄
xn+1̂,2

n+1̂,2
dη

xn+1̂,1

n+1̂,1
dξ̄

tn+1̂,2

n+1̂,2
dξ

tn+1̂,1

n+1̂,1
dηxn,2

n+1̂,2
dη̄xn,1

n+1̂,1
dξ

tn+1̂−2̂,2

n+1̂,2
dξ̄

tn+1̂−2̂,1

n+1̂,1

·
(

η̄n+1̂+1̂,1ηn+1̂,1

)xn+1̂,1
(

η̄n+1̂,2ηn+1̂+1̂,2

)xn+1̂,2
(

ξ̄n+1̂+2̂,1ξn+1̂,1

)tn+1̂,1
(

ξ̄n+1̂,2ξn+1̂+2̂,2

)tn+1̂,2

(2.13)

is reduced to

(−1)xn,1(xn,1+xn,2)+tn,2(tn,1+tn,2)+tn+1̂,2(tn+1̂,1+tn+1̂,2)

· (−1)(tn,1+tn,2)(tn+1̂,1+tn+1̂,2)+(tn−2̂,1+tn−2̂,2)(tn+1̂−2̂,1+tn+1̂−2̂,2)

·dη̄
xn+1̂,2

n+1̂,2
dη

xn+1̂,1

n+1̂,1
dξ tn∗ ,f

n∗ dη
xn−1̂,2
n,2 dη̄

xn−1̂,1
n,1 dξ̄

tn∗−2̂,f
n∗

·
(

η̄n+1̂+1̂,1ηn+1̂,1

)xn+1̂,1
(

η̄n+1̂,2ηn+1̂+1̂,2

)xn+1̂,2 (ξ̄n∗+2̂ξn∗
)tn∗ ,f . (2.14)

In the above step, we have introduced the new index tn∗,f and the Grassmann variables ξn∗ , ξ̄n∗+2̂,
dξn∗ , dξ̄n∗+2̂ which are defined by

tn∗,f =
(

tn,1 + tn,2 + tn+1̂,1 + tn+1̂,2

)
mod 2, (2.15)(

dξn∗dξ̄n∗+2̂ξ̄n∗+2̂ξn∗
)tn∗,f (= 1) . (2.16)

In this way, by integrating out old d.o.f and replacing them with this new set of Grassmann vari-
ables, one can perform a coarse-graining of the Grassmann part. The sign factor in Eq. (2.14) arises
because of the anticommutative property of Grassmann variables. This factor is incorporated into
the new bosonic tensor T new

xn+1̂tn∗ ,bxn−1̂tn∗−2̂,b
at the step of contraction described in Eq. (2.12).

We saw a half coarse-graining step of the Grassmann part. Similarly, one can take the coarse-
graining along the 2̂-direction. Then the scales of the 1̂-direction and the 2̂-direction become equal
and one can reach large space-time volume by iterating the same steps.

3. Numerical results

3.1 Two dimensional GHOTRG

Figure 2 shows the fermion number density

n =
1
V

∂ lnZ
∂ µ

(3.1)

of the free fermion system and the Thirring model whose tensor network representation is derived
in Ref. [5]. In the large µ region, the fermion number density reaches the saturation density. This
is very obvious result. When the coupling constant g is finite, the Silver Blaze like phenomenon
occurs at smaller µ , and the fermion number density does not change. This result is consistent with
the previous one using the GTRG in Ref. [5]. If g = 0, one can calculate exactly the determinant
of the Wilson–Dirac operator and the number density of the the free fermion system. Comparing it
with the GHOTRG result, we can see the error of GHOTRG is less than 5% though the definition
of the number density includes the first derivative of the free energy.
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Figure 3 shows the eigenvalues of M± which are made from coarse-grained tensors. The
hierarchy of eigenvalues at µ = 1.0 is clearly gentler than that at µ = 2.0, and it gets worse as
the number of iteration increases. This behavior is due to the fact that the accuracy of (HO)TRG
becomes worse near the critical point or the cross-over point.
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GHOTRG: m=0.0, g=0.0, Dcut=32
Exact: m=0.0, g=0.0

GHOTRG: m=0.0, g=0.7, Dcut=32
GHOTRG: m=0.5, g=0.7, Dcut=32

Saturation density

Figure 2: The fermion number density. For massless free case, the exact value is also shown. V = 32×32.
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Figure 3: The eigenvalues of M± for massless free fermion. µ = 1.0, 2.0, Dcut = 32.

3.2 Three dimensional GHOTRG

We apply GHOTRG to the three dimensional free fermion system to calculate the free energy.
On account of computational limitations, we carried out the calculation up to Dcut = 6. Figure 4
shows the relative error of the free energy defined by

δ =
lnZExact −RelnZ (Dcut)

|lnZExact|
. (3.2)
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When we set Dcut = 6, the percent of accuracy is around 4% for 8×8×8 lattice. The reader may
feel that Dcut = 6 is very rough approximation. Actually we observe that when Dcut is small, say 2,
4 and 6, the accuracy of the calculation is not monotonically improved for increasing Dcut.
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Figure 4: The relative error of the free energy. V = 8×8×8, m = 0.0, g = 0.0, Dcut = 6.

4. Summary and outlook

We formulated Grassmann higher order tensor renormalization group and applied it to the free
fermion system and the Thirring model. The results are consistent with analytical or previous ones
thus we conclude that GHOTRG is a correct algorithm.

Observing the hierarchy of eigenvalues, the accuracy of GHOTRG seems to become worse
around the transition point (µ ≈ 1). This shows that the situation of accuracy for GHOTRG is
similar to that of the GTRG.

In principle, now one can deal with relativistic fermion systems in any dimension by using
GHOTRG. It is, however, not immediately possible to start four dimensional QCD with finite
fermion density or θ term owing to a huge computational cost. Therefore first it is legitimate
to study lower dimensional systems suffering from the sign problem, such as lattice chiral gauge
theories, lattice SUSY and so on. We hope that in future our formulation will be used in such
studies.
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